TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOB SPECIFICATION SHEET</td>
<td>3</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>3</td>
</tr>
<tr>
<td>SYSTEM CONFIGURATIONS</td>
<td>4</td>
</tr>
<tr>
<td>SYSTEM DEFINITIONS</td>
<td>6</td>
</tr>
<tr>
<td>TIMER OPERATION</td>
<td>6</td>
</tr>
<tr>
<td>TIMER DISPLAY FEATURES</td>
<td>6</td>
</tr>
<tr>
<td>TIMER DISPLAY - SCREEN EXAMPLES</td>
<td>7</td>
</tr>
<tr>
<td>NETWORK/COMMUNICATION CABLES AND CONNECTIONS</td>
<td>7</td>
</tr>
<tr>
<td>NXT MULTI LANGUAGE PROGRAMMING PARAMETERS AND RANGES</td>
<td>8</td>
</tr>
<tr>
<td>MASTER PROGRAMMING MODE FLOW CHART</td>
<td>9</td>
</tr>
<tr>
<td>MASTER PROGRAMMING GUIDE</td>
<td>10</td>
</tr>
<tr>
<td>USER PROGRAMMING MODE FLOW CHART</td>
<td>14</td>
</tr>
<tr>
<td>DIAGNOSTIC PROGRAMMING MODE FLOW CHART</td>
<td>14</td>
</tr>
<tr>
<td>DIAGNOSTIC PROGRAMMING GUIDE</td>
<td>15</td>
</tr>
<tr>
<td>POWERHEAD ASSEMBLY</td>
<td>16</td>
</tr>
<tr>
<td>CONTROL VALVE ASSEMBLY</td>
<td>17</td>
</tr>
<tr>
<td>BYPASS ASSEMBLY</td>
<td>18</td>
</tr>
<tr>
<td>2310 SAFETY BRINE VALVE</td>
<td>19</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>20</td>
</tr>
<tr>
<td>GENERAL SERVICE HINTS FOR METER CONTROL</td>
<td>21</td>
</tr>
<tr>
<td>WATER CONDITIONER FLOW DIAGRAMS</td>
<td>23</td>
</tr>
<tr>
<td>REMOVING THE GEAR BOX ASSEMBLY</td>
<td>26</td>
</tr>
<tr>
<td>INSERTING THE CIRCUIT BOARD</td>
<td>27</td>
</tr>
<tr>
<td>CONNECTING THE CIRCUIT BOARD</td>
<td>27</td>
</tr>
<tr>
<td>DIMENSIONAL DRAWINGS</td>
<td>28</td>
</tr>
<tr>
<td>METER FLOW DATA</td>
<td>29</td>
</tr>
<tr>
<td>INJECTOR FLOW DATA</td>
<td>30</td>
</tr>
<tr>
<td>SERVICE ASSEMBLIES</td>
<td>31</td>
</tr>
</tbody>
</table>

IMPORTANT PLEASE READ:

- The information, specifications and illustrations in this manual are based on the latest information available at the time of printing. The manufacturer reserves the right to make changes at any time without notice.
- This manual is intended as a guide for service of the valve only. System installation requires information from a number of suppliers not known at the time of manufacture. This product should be installed by a plumbing professional.
- This unit is designed to be installed on potable water system only.
- This product must be installed in compliance with all state and municipal plumbing and electrical codes. Permits may be required at the time of installation.
- It is established that when daytime water pressure exceeds 80 psi (5.5 bar), the maximum pressure rating of 125 psi (8.6 bar) can be exceeded. A pressure regulator must be installed on this system or warranty is voided.
- Do not install the unit where temperatures may drop below 32°F (0°C) or above 125°F (52°C).
- Do not place the unit in direct sunlight. Black units will absorb radiant heat increasing internal temperatures.
- Do not strike the valve or any of the components.
- Warranty of this product extends to manufacturing defects. Misapplication of this product may result in failure to properly condition water, or damage to product.
- A prefilter should be used on installations in which free solids are present.
- In some applications local municipalities treat water with Chloramines. High Chloramine levels may damage valve components.
- Correct and constant voltage must be supplied to the controller to maintain proper function.
INSTALLATION

A minimum of 20 psi (1.4 bar) of water pressure is required for regeneration valve to operate effectively.

Electrical Facilities
An uninterrupted alternating current (A/C) supply is required. Make certain voltage supply is compatible with unit before installation and current supply is always on and cannot be turned off with another switch.

Existing Plumbing
Condition of existing plumbing should be free from lime and iron buildup. Replace piping that has heavy lime and/or iron build-up. If piping is clogged with iron, install a separate iron filter unit ahead of the water softener.

Location Of Softener And Drain
Locate the softener close to a clean working drain and connect according to local plumbing codes.

BYPASS VALVES
Always provide for the installation of a bypass valve if unit is not equipped with one.

NOTE: This system must be depressurized before removing any connections for servicing.

Installation Instructions
1. Place the softener tank where you want to install the unit. Be sure the tank is level and on a firm, clean base.
2. Perform all plumbing according to local plumbing codes.
3. Refer to Figure 1. Cut the 1.05” (2.6 cm) distributor tube flush with the top of the tank (A). Deburr the outside of the tube (B) after cutting. Lubricate the O-ring (C) with non-petroleum based grease.
4. Lubricate the distributor O-ring seal and tank O-ring seal. Use only non-aerosol silicone lubricant.
5. Load media and place the control valve on the tank.
6. All soldering MUST be done on any connections requiring soldering prior to connecting the main control valve. The main control valve will be damaged if it is connected before soldering.
7. Apply plumber tape to all threaded fittings.
8. On units with a bypass, place in Bypass position. Turn on the main water supply. Open a cold soft water tap nearby and let water run a few minutes or until the plumbing is free of foreign material (usually solder) resulting from the installation. Close the water tap when water runs clean.
9. Make plumbing connections to valve.
10. Plug the valve into an approved power source. Make all connections, and turn on the electrical supply.

CAUTION
Minimum water pressure is 20 psi (1.3 bar).
Water pressure is not to exceed 125 psi (8.6 bar).
Minimum water temperature is 34°F (1.1°C).
Water temperature is not to exceed 110°F (43°C).
Ambient temperature 34°F to 122°F (1.1 to 50°C).
Disconnect all power sources before servicing.
Always operate with cover in place.

NOTE: This product should be installed by qualified personnel. Comply with all plumbing codes when installing this product. Comply with all electrical codes when installing this product.

WARNING: This system must be depressurized before removing any connections for servicing.
11. Place the bypass in Service position. Cycle the valve to the Backwash position, and let the water flow slowly into the mineral tank until the air is purged from the unit.

12. Add water to the brine tank until the top of the air check is covered. Manually step the valve to the Brine Draw Position, and allow the valve to draw water from the brine tank until it stops. The air check will check at approximately the midpoint of the screened intake area.

13. Manually step the valve to the Brine Refill Position, and allow the valve to return to In Service automatically.

14. With the valve in Service, check that there is at least 1" (2.5 cm) of water above the grid (if used) in the brine tank.

15. Fill the brine tank with salt.

16. Allow the control to run automatically. Setup is now complete.

Multiple System Shutoff

For systems requiring no hard water bypass, a solenoid operated diaphragm valve can be installed in the service outlet pipe (see Figures 2, 3, and 4). The solenoid would be connected to the 24 VAC Bypass Relay terminal strip on the lower left portion of the NXT circuit board (Figure 6 7000NXT Circuit Board).

Plastic solenoid operated diaphragm valves are sold separately from the pipe adapter kits. For each valve ordered, one hardware kit, and one pipe adapter kit is required. Available plastic valve configurations include:

<table>
<thead>
<tr>
<th>Valve</th>
<th>Hardware Kit (Includes 2 each nuts, O-ring, split ring)</th>
<th>Grooved Adapter Kit (Includes 2 adapters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN: 1070227 - 1" Male NPT Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN: 1070228 - 3/4" Female NPT Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN: 1071091 - 22 mm Male Socket Weld Kit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 Interlocked / Multiple Tank Alternating Systems (Systems 5 and 9)

Figure 4 Series Regeneration / Twin Alternating Systems (Systems 6 and 7)
SYSTEM DEFINITIONS

<table>
<thead>
<tr>
<th>System Number</th>
<th>System Description</th>
<th># of Tanks/Controls</th>
<th>Type</th>
<th>Operation Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Single Unit</td>
<td>1</td>
<td>Time Clock: No Meter Immediate: One Meter Delayed: One Meter Remote Signal Start: No Meter</td>
<td>Single tank configuration.</td>
</tr>
<tr>
<td>5</td>
<td>Interlocked</td>
<td>2, 3, or 4</td>
<td>Immediate: All Meters Remote Signal Start: No Meter</td>
<td>All tanks in parallel supplying treated water. Each unit in the system will have its own flow meter/sensor input. The control will delay the start of Regeneration if another unit is already in Regeneration. Once that unit has completed a Regeneration cycle, and has returned to Service, the unit with longest regeneration queue time will begin Regeneration. No more than one unit will be in Regeneration at a time.</td>
</tr>
<tr>
<td>6</td>
<td>Series Regeneration</td>
<td>2, 3, or 4</td>
<td>Immediate: One Meter Delayed: One Meter Remote Signal Start: No Meter</td>
<td>All tanks in parallel supplying treated water. Only #1 control will monitor flow meter/sensor input. When a regeneration is required for the system, it will regenerate valve address #1 first, immediately followed by #2, then #3, then #4 if installed. No more than one unit will be in Regeneration at a time.</td>
</tr>
<tr>
<td>7</td>
<td>Twin Alternating</td>
<td>2</td>
<td>Immediate: One Meter Remote Signal Start: No Meter</td>
<td>One tank online supplying treated water, one tank in Standby. Only #1 control will monitor its flow meter/sensor input. Regeneration of a unit will begin after the other control has left Standby and returned to Service. When the Regeneration cycle is complete, the regenerated unit will enter Standby. Standby on each tank is controlled by the 24 VAC solenoid bypass on the NXT circuit board.</td>
</tr>
<tr>
<td>9</td>
<td>Multiple Tank Alternating</td>
<td>2, 3, or 4</td>
<td>Immediate: All Meters Remote Signal Start: No Meter</td>
<td>One, two, or three tanks online supplying treated water, one tank in Standby. Meter/sensor input is required on each tank. Regeneration of a unit will begin after the other control has left Standby and returned to Service. When the Regeneration cycle is complete, the regenerated unit will enter Standby. Standby on each tank is controlled by the 24 VAC solenoid bypass on the NXT circuit board.</td>
</tr>
</tbody>
</table>

TIMER OPERATION

Timer Operation During Programming
The timer enters the Program Mode in Standby or Service Mode as long as it is not in regeneration. While in the Program Mode the timer continues to operate normally monitoring water usage. Timer programming is stored in memory permanently.

Timer Operation During A Power Failure
All program settings are stored in permanent memory. Current valve position, cycle step time elapsed, and time of day are all stored during a power failure. These settings will be restored upon power re-application. Time is kept during a power failure, and time of day is adjusted upon power up (as long as power is restored within 12 hours).

NOTE: The time of day on the main display screen will flash for 5 minutes when there has been a power outage. The flashing of the time of day can be stopped by pressing any button on the display.

Remote Lockout
The timer does not allow the unit/system to go into Regeneration until the Regeneration Lockout Input signal to the unit is cleared. This requires a contact closure to activate the unit. The recommended gauge wire is 20 with a maximum length of 500 feet.

Regeneration Day Override Feature
If the Day Override option is turned on and the valve reaches the set Regeneration Day Override value, the Regeneration Cycle starts if no other networked unit is in Regeneration. If other units are in regeneration, it is added to a regeneration queue. This occurs regardless of the remaining volume available.

WARNING
Transformer must be grounded and ground wire must be terminated to the circuit board grounding screw before installation. Supplied 40VA transformer must be used.

TIMER DISPLAY FEATURES

![Timer Display Features Diagram](https://via.placeholder.com/150)

- **Shift Button:** Adjusts Values to the Left
- **Up Button:** Adjusts Values Up
- **Down Button:** Adjusts Values Down
- **Diagnostic Button:** View Flow Rate, Peak Flow Rate, Totalizer, Hours Between Last Two Regenerations, Hours Since Last Regeneration, Adjustable Volume Remaining, Valve Position, Send & Receive Errors, Software Version
- **Extra Cycle Button:** Cycle Valve in Regeneration/Cycle Programming Steps
- **Display Screen:** Time of Day alternates with Error Screen Example: Valve #, Volume Remaining, Errors
- **Status LED:** (IN, RGQ, SRV, LCK)
- **Flow Indicator:**
- **Valve State:** (INI, RGQ, SRV, LCK)
- **Time of Day:**
- **Volume Remaining:**
- **System Address:**
- **Valve Address:**

6 • FLECK 7000 NXT Service Manual
Valve State

INI (Initializing) - INI will display on the screen for 30 to 45 seconds when initializing after a power failure reset or programming.

RGQ (Regeneration Queued) - RGQ indicates that the reserve has been entered in a delayed system and regeneration has been queued. When in the main screen, press the Extra Cycle button to toggle service (SRV) with RGQ.

SRV (Service) - SRV will display when the unit is In Service.

LCK (Lock) - Lock will be displayed when the terminal/remote input block P4 on the circuit board is switched to “lock”. See the “Network/Communication Cables & Connections” section of this manual.

LED Status Lights

Blue LED - Illuminates while the unit is In Service and no errors exist. The unit will always be In Service unless a regeneration trigger has occurred (green LED light will be displayed). A blinking blue light indicates the timer is In Service, and queued for regeneration.

Green LED - Illuminates when the unit is in Regeneration mode, unless an error condition exists. A blinking green light indicates the timer is in Standby, and not in Regeneration.

Red LED - Illuminates when there is an error.

Flow Indicator

A rotating line (appearing as a rotating star shape) will display on the screen when flow is going through the meter.

TIMER DISPLAY - SCREEN EXAMPLES

1. In Service: System 4 Time Clock

 4# SRV 03:45PM
 REGEN IN 07 DAYS

2. In Service: System 4 Flow Meter Initiated or System 4 Flow Meter Delayed

 4# SRV/ 05:38PM
 VOLUME: 1000 g

3. In Service: System 5 Flow Meter Initiated (Lead Unit)

 5#1 SRV/ 05:38PM
 VOLUME: 1000 g

4. In Service: System 5 Flow Meter Initiated (Lag Unit #3)

 5#3 SRV 03:45PM
 VOLUME 1000 g

5. In Service: System 6 Flow Meter Initiated (Lead Unit)

 6#1 SRV/ 05:38PM
 SYSVOL 4000 g

NETWORK/COMMUNICATION CABLES AND CONNECTIONS

Use a CAT5 Network/Communication cable. Connect the network/communication cable first before programming.

The maximum cable length between timers is 100 feet. Connect each unit together from one communication port to the next communication port. It does not matter which one goes to the next one.

The number of network/communication cables needed for setup is one less than the total number of valves.

Two-Unit System: One network/communication cable
Three-Unit System: Two network/communication cables
Four-Unit Systems: Three network/communication cables

Figure 6 7000NXT Circuit Board
NXT Multi Language
Programming Parameters and Ranges

<table>
<thead>
<tr>
<th>System Type</th>
<th>4 Time Clock</th>
<th>4 Metered Immediate</th>
<th>4 Metered Delayed</th>
<th>5 Interlock</th>
<th>6 Series</th>
<th>7 Alternating</th>
<th>9 Alternating</th>
<th>Programming Parameter Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Address</td>
<td>1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 thru 4</td>
</tr>
<tr>
<td>Select Language</td>
<td>x x x x x x x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>English, Espanol</td>
</tr>
<tr>
<td>System Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 thru 4</td>
</tr>
<tr>
<td>Regen Type</td>
<td>x x x x x x x x x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time Clock, Metered Delayed, Metered Immediate</td>
</tr>
<tr>
<td>Regenerant Flow</td>
<td>x x x x x x x x x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Downflow, Upflow, Upflow Fill First</td>
</tr>
<tr>
<td>Remote Signal Start</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:01:00 - 04:00:00</td>
</tr>
<tr>
<td>Display Format</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US - Gallons Metric - Liters</td>
</tr>
<tr>
<td>Unit Capacity</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9000 - 9900000 Grains 90.0 - 199000.0 Grams</td>
</tr>
<tr>
<td>Capacity Safety Factor</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-50%</td>
</tr>
<tr>
<td>Feed Water Hardness</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 199 Grains/Gallons 2 - 199 mg/l</td>
</tr>
<tr>
<td>Regeneration Day Override</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 1 - 99</td>
</tr>
<tr>
<td>Regeneration Time</td>
<td>x o o o o o o o o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12:00 a.m. - 11:59 p.m. 00:00 - 23:59 Hour</td>
</tr>
<tr>
<td>Cycle 1</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Cycle 3</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Cycle 4</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Cycle 5</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Cycle 6</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off, 00:00:00 - 04:00:00</td>
</tr>
<tr>
<td>Auxiliary Relay</td>
<td>x x x x x x x u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td>Aux Relay Output Start</td>
<td>c c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:00:00 to Total Regeneration Time - 1</td>
</tr>
<tr>
<td>Aux Relay Output End</td>
<td>c c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start Time + 1 to Total Regeneration Time</td>
</tr>
<tr>
<td>Chemical Pump</td>
<td>x x x x x x u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td>CPO Aux Relay Volume</td>
<td>c c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 999 gallons 0.1 - 99.9 liters</td>
</tr>
<tr>
<td>CPO Aux Relay Time</td>
<td>c c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00:00:01 - 02:00:00 00:00:01 - 02:00:00</td>
</tr>
<tr>
<td>Flow Meter</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.21 (7000), Generic</td>
</tr>
<tr>
<td>Generic</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x x x x x</td>
</tr>
<tr>
<td>Maximum Flow Rate</td>
<td>a a a a a a a a a a a a a a a a a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 - 2000 GPM 2.0 - 200.0 m³/h</td>
</tr>
<tr>
<td>Add Gallons or m³</td>
<td>a a a a a a a a a a a a a a a a a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 255 Gallons 1.0 - 25.5 m³</td>
</tr>
<tr>
<td>Every _ _ _ Pulses</td>
<td>a a a a a a a a a a a a a a a a a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 255 1 - 255</td>
</tr>
</tbody>
</table>

Notes
- Regeneration Time will only be viewed if Regeneration Day Override is used.
- If Auxiliary Relay is Enabled then Chemical Pump Relay will not be viewed or if Chemical Pump Relay is Enabled then Auxiliary Relay will not be viewed.
- All Relay Output parameters programming will be viewed if Enabled.
- If Generic Flow Meter is chosen, then programming parameters will be viewed.
Before entering Master Programming, please contact your local professional water dealer.

NOTE: Depending on current option settings, some displays cannot be viewed or set.

Entering Master Programming Mode

1. Press and hold the Shift and Up buttons for 5 seconds. Press the Extra Cycle button once per display until all displays are viewed and Normal Display is resumed. Option setting displays may be changed as required by pressing either Up or Down button. Use the Shift button to move one space to the left.
2. Depending on current valve programming, certain displays may not be viewed or set.

NOTE: If the "D" button is pressed while in master programming, no changes will be saved.
MASTER PROGRAMMING MODE FLOW

CHART continued

<table>
<thead>
<tr>
<th>Chart</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX RELAY OUTPUT END</td>
<td>Auxiliary Relay Output in End 1 at 0 hours, 0 minutes, & 0 seconds</td>
</tr>
<tr>
<td>RANGE</td>
<td>00:00:00 to 18:00:00</td>
</tr>
<tr>
<td>CHEMICAL PUMP ENABLED</td>
<td>Chemical Pump is Disabled</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Enabled (Default)</td>
</tr>
<tr>
<td>NOTE</td>
<td>This screen will only display on the lead unit for System Types 6 & 7. For all other system types, it will display for all units.</td>
</tr>
<tr>
<td>CPC AUX RELAY VOLUME</td>
<td>Chemical Pump Auxiliary Relay Volume at 0 Gallons</td>
</tr>
<tr>
<td>RANGE</td>
<td>000 to 999 gallons in U.S. Format (0.000 to 9.999 L in Metric Format)</td>
</tr>
<tr>
<td>NOTE</td>
<td>Only displayed on units that physically have a meter (Lead always has a meter). Only shown if Auxiliary Relay is disabled on System Types 6 & 7.</td>
</tr>
<tr>
<td>CPC AUX RELAY TIME</td>
<td>Chemical Pump Auxiliary Relay at 0 Hours, 0 Minutes, & 0 Seconds</td>
</tr>
<tr>
<td>RANGE</td>
<td>00:00:00 to 02:00:00</td>
</tr>
<tr>
<td>FLOW METER 1.2 TURBINE</td>
<td>1.2 Turbine Flow Meter</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>1.2 Turbine, Generic</td>
</tr>
<tr>
<td>NOTES</td>
<td>Default flow meter type is based on the valve type. This screen will only display on the lead unit for System Types 6 & 7. All other system types it will display for all units.</td>
</tr>
<tr>
<td>MAXIMUM FLOW RATE</td>
<td>Maximum Flow Rate of 0 gpm</td>
</tr>
<tr>
<td>RANGE</td>
<td>20 - 2,000 gpm (U.S. Format)</td>
</tr>
<tr>
<td>NOTES</td>
<td>Only displayed if “Generic” is chosen for the flow meter.</td>
</tr>
<tr>
<td>CPC 01 GALLONS EVERY 01 PULSES</td>
<td>Add 1 Gallon for Each Pulse in U.S. Format</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Gallons (U.S. Format), Liters (Metric Format)</td>
</tr>
<tr>
<td>RANGE</td>
<td>1 - 99 Gallons (U.S. Format), 0.1 - 99.9 L (Metric Format)</td>
</tr>
<tr>
<td>NOTES</td>
<td>Only displayed if “Generic” is chosen for the flow meter.</td>
</tr>
<tr>
<td>PROGRAMMING UNIT PLEASE WAIT</td>
<td>Master Programming Mode is Exiting</td>
</tr>
</tbody>
</table>

MASTER PROGRAMMING GUIDE

When the Master Programming Mode is entered, parameters can be set to make the timer[s] function as needed.

NOTE: Depending on current option settings, some displays cannot be viewed or set.

Entering Master Programming Mode:

1. Press and hold the Shift and Up buttons for 5 seconds.
2. Set the time of day display to 12:01 PM or 12:01HR (See the “Setting the Time of Day” section on the “Timer Operation” page). Then go to the main display screen, press the Up and Down buttons at the same time for 5 seconds.

Exiting Master Programming Mode

1. Press the Extra Cycle button once per display until all are viewed. Master Programming Mode is exited and the normal display screen appears.
2. To exit the Master Programming Mode without saving changes, press the Diagnostic button.

NOTE: If no keypad activity is made for 5 minutes while in the Master Programming Mode, or if there is a power failure, no changes will be saved, and the unit will go back to the main display screen.

Resets

Soft Reset: Press and hold the Up and Down buttons for 25 seconds until 12:00PM (or 12:00HR) appears. This resets all parameters except for the flow meter totalizer volume.

Master Reset: Hold the Extra Cycle button while powering up the unit. This resets all of the parameters in the unit. Check and verify the choices selected in Master Programming Mode prior to this procedure.

1. Choice of Language

This option selects the language for programming and display.

1. Use Up or Down to select language.
2. Press the Extra Cycle button.

SELECT LANGUAGE

ENGLISH

2. **System Type**

This program type selects the system type {4, 5, 6, 7, or 9}.

1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

SYSTEM TYPE:

4

SINGLE UNIT

3. **Valve Address**

This program step selects the valve address {1, 2, 3, or 4} within the network. The address is needed for each timer for communication. The #1 is the “master” or “lead” which contains programmed parameters, that will be used by all of the timer[s] in the network to control Regeneration, in Service, or Standby of all the valve[s] in the system. This option will be skipped if System 4 is selected.

1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

VALVE ADDRESS:

2
MASTER PROGRAMMING GUIDE
continued

4. System Size
This program step is used to set up the number of valves (2, 3, or 4) in the system. This option will be skipped if System 4 is selected.
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

| SYSTEM SIZE: | 2 VALVES |

5. Regeneration Type
This program step is used to set up the trigger type.
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

| REGEN TYPE: | TIME CLK DELAYED |

6. Regenerant Flow
This program step selects the regenerant flow type (Downflow, Downflow Fill First, Filter, or Iron Filter).

CAUTION: Do not select the Iron Filter option when programming this control. This selection is incompatible with the valve and may cause the valve to operate incorrectly.
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

| REGENERANT FLOW: | DOWN FLOW |

7. Remote Signal Start
This program step selects the remote signal start. Hours, minutes, and seconds can be changed. When Remote Signal Start is active, the main screen will display. The options are either Off or set to the desired time.
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

| REMOTE SIGNAL START: | 00:00:00 |

Example of setting Remote Signal Start to 6 minutes. The display counts down to 0. If Remote Signal Start is detected for 6 minutes, it will remotely signal start.

8. Display Format
This program step is used to set the desired volume display format. This option must be the same on all system units. U.S. will display volumes in gallons and is in 12 hour timekeeping. Metric will display volumes in liters and is in 24 hour timekeeping.
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.

| DISPLAY FORMAT: | US-GALLONS |

9. Unit Capacity
This program selects the individual timer’s total capacity of hardness that can be removed. The unit capacity is measured in grains if in U.S. mode and grams CaCO3 in Metric mode.

- **U.S. Range:** 9,000 to 9,900,000 Grains (Default = 300,000 Grains)
- **Metric Range:** 90.0 to 199,000.0 grams CaCO3 (Default = 300.0 grams CaCO3)
1. Use the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

| UNIT CAPACITY: | 300000 GRAINS |

10. Capacity Safety Factor
This program step is used to adjust the capacity of the system. This is a percentage by which the unit’s capacity is reduced.

Range: 0 – 50% (Default = 0%)
1. Use the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

| CAPACITY SAFETY FACTOR: | 00% |

11. Feed Water (Hardness)
This program step is used to set the feed water hardness. The system will automatically calculate volume remaining based on the Unit Capacity, Capacity Safety Factor and Feed Water Hardness entered.

- **U.S. Range:** 1 – 199 gpg (Grains per Gallon) (Default = 15)
- **Metric Range:** 2 – 199 milligrams CaCO3/Liter (Default = 30)
1. Use the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

| FEED WATER HARDNESS: | 015 GPG |

12. Regeneration Day Override
This program step sets the maximum amount of time (in days) the unit can be In Service without a Regeneration.

Default: OFF

Range: 1 - 99 Days

NOTE: If “On,” the screen for regeneration time will display.
1. Use the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

| REGENERATION DAY OVERRIDE: | OFF |

| REGENERATION DAY OVERRIDE: | 01 DAYS |
13. Regeneration Time
This program step sets time of day for a delayed regeneration to occur, or regeneration day override.
Default U.S.: 02:00 AM
Default Metric: 02:00 HR
1. Use the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

14. Regeneration Cycle Steps
This program step programs the Regeneration Cycle step times 1 through 5. Please refer to the chart below for regenerant flow default cycle steps and times.

<table>
<thead>
<tr>
<th>Regenerant Flow</th>
<th>Cycle 1</th>
<th>Time</th>
<th>Cycle 2</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downflow</td>
<td>Backwash</td>
<td>10 Minutes</td>
<td>Brine Draw/Slow Rinse</td>
<td>60 Minutes</td>
</tr>
<tr>
<td>DF Fill First</td>
<td>Brine Tank Fill</td>
<td>10 Minutes</td>
<td>Brine Making</td>
<td>60 Minutes</td>
</tr>
<tr>
<td>Filter</td>
<td>Backwash</td>
<td>10 Minutes</td>
<td>Rapid Rinse</td>
<td>10 Minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regenerant Flow</th>
<th>Cycle 3</th>
<th>Time</th>
<th>Cycle 4</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downflow</td>
<td>2nd Backwash</td>
<td>10 Minutes</td>
<td>Rapid Rinse</td>
<td>12 Minutes</td>
</tr>
<tr>
<td>DF Fill First</td>
<td>Backwash</td>
<td>10 Minutes</td>
<td>Brine Draw/Slow Rinse</td>
<td>10 Minutes</td>
</tr>
<tr>
<td>Filter</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regenerant Flow</th>
<th>Cycle 5</th>
<th>Time</th>
<th>Cycle 6</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downflow</td>
<td>Brine Fill</td>
<td>12 Minutes</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>DF Fill First</td>
<td>2nd Backwash</td>
<td>5 Minutes</td>
<td>Rapid Rinse</td>
<td>10 Minutes</td>
</tr>
<tr>
<td>Filter</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

15. Auxiliary Relay Output
The next two displays are part of a series of settings used to program the optional relay output. The first setting turns the output On/Off during Regeneration only. The second turns the output On during Service only, every time a set volume of water used has accumulated.

16. Timed Auxiliary Relay Output Window (Start & End Time Setting, If Auxiliary Relay is Enabled)
This option setting consists of two displays. The first display sets the turn-on time of the output, referenced to the start of the first Regeneration Cycle. The second display sets the output turn-off time, referenced again to the start of first Regeneration Cycle.

Start Time: Anytime during Regeneration (Except Last Minute of the Regeneration Time)
End Time: At start time, and anytime during the regeneration cycle.

17. Chemical Pump Auxiliary Relay Output Window
This option setting consists of two displays. The first display sets the volume of water flow at which the output turns On. The second display sets the time of the output.

U.S. Range: 0 – 999 Gallons (1 – 999 Seconds)
Metric Range: 0.00 – 9.99 m³ (1 – 999 Seconds)
1. Activate Output After Volume Set is Reached.
2. Use the Shift button to move one space to the left for each number entered.
3. Use Up or Down buttons to adjust this value.
4. Press the Extra Cycle button.

18. Flow Meter Size (Default to Valve Type)
This program step sets the size of the flow meter.
1.2” Turbine
Generic Flow Meter
1. Use Up or Down buttons to adjust this value.
2. Press the Extra Cycle button.
19. Maximum Flow Rate
This program step sets maximum flow rate of the generic flow meter.
1. Press the Shift button to select the digit you want to modify.
2. Press the Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

```
MAXIMUM FLOW RATE: 0000 gpm
```

20. Pulses per Gallon/Liter
This program step sets the pulses per gallon/liter for generic flow meters.
1. Press the Shift button to select the digit you want to modify.
2. Press the Up or Down buttons to adjust this value.
3. Press the Extra Cycle button.

```
ADD 01 GALLONS EVERY 001 PULSES
```

22. End of Master Programming Mode

```
PROGRAMMING UNIT PLEASE WAIT...
```
USER PROGRAMMING MODE FLOW CHART

NOTE: User Mode is only displayed when a metered option is chosen under System Type. Depending on current option settings, some displays cannot be viewed or set.

Entering User Mode
Hold the Up and Down buttons for 5 seconds.

NOTE: User Mode cannot be entered on the Lag unit for System 6.

1. Enter User Mode
 • Press and hold the Up and Down buttons for 5 seconds.

2. Set Language Option
 • Press Up or Down to select language.
 • Press the Extra Cycle button to proceed to the next step.

3. Set Feed Water Hardness
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button to proceed to the next step.

NOTE: Only displayed when a metered option is chosen under System Type.

4. Set Regeneration Day Override
 • To turn On and set the days, press the Down button.
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button to proceed to the next step.

5. Regeneration Time
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button.

6. End of User Programming Mode

DIAGNOSTIC PROGRAMMING MODE FLOW CHART

Entering Diagnostic Mode
1. Push and release the “D” button.
2. Press the Extra Cycle button once per display until all displays are viewed and Normal Display is resumed. Changes will be saved.
3. Push and release the “D” button at anytime during diagnostic mode and the timer will exit the mode. No changes will be saved.
4. Depending on the current controller programming, certain displays may not be able to be viewed or set.

1. Enter Diagnostic Mode
 • Press and hold the Up and Down buttons for 5 seconds.

2. Set Language Option
 • Press Up or Down to select language.
 • Press the Extra Cycle button to proceed to the next step.

3. Set Feed Water Hardness
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button to proceed to the next step.

4. Set Regeneration Day Override
 • To turn On and set the days, press the Down button.
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button to proceed to the next step.

5. Regeneration Time
 • Press the Shift, Up, and Down buttons to move the cursor and change the value of the numbers.
 • Press the Extra Cycle button.

6. End of Diagnostic Mode
When the Diagnostics Mode is entered, all available displays are viewed as needed. Depending on current option settings, some displays cannot be viewed.

Overview Diagnostic Mode

The current diagnostic will be displayed until Extra Cycle key is pressed. There is no time limit on each display. The timer will display individual valve information, not system information. In the event of regeneration occurring while displaying diagnostics, the regeneration step and time remaining will be displayed. When regeneration has been completed, the display will return to the normal Time of Day display.

Entering and Exiting Diagnostic Mode

Push and Release the “D” button to enter. Pressing the Extra Cycle button will move to the next diagnostic to be displayed. Push the Extra Cycle button once per display until all are viewed. Pressing the Diagnostic button, while in the Diagnostic Mode, will cause the unit to leave the Diagnostic Mode and return to the normal time of day display.

Current Flow Rate

Flow Rate for this particular Timer will be calculated and displayed. Flow rates will be calculated every second. The display updates once per second. Flow rates are dependent upon the meter used.

- 1.2” Turbine Meter: 40 gpm
1. Press the Extra Cycle button.

Peak Flow Rate

The Peak Flow Rate since the last regeneration will be captured.

- **Range:** 0 to Maximum Number
1. Press the Extra Cycle button.

Totalizer

The total volume of treated water that passes through a meter will be counted.

NOTE: The user cannot edit below the current volume remaining.

1. Reset to zero by holding the Up and Down arrow keys for 5 seconds during the Totalizer display.
2. Press the Extra Cycle button.

Hours Between Last Two Regenerations

The hours between the last two regenerations will be saved and displayed.
1. Depress the Extra Cycle button.

Volume Remaining (This Tank Only)

Volume remaining in the current tank will be adjustable when displayed in this mode. Regeneration will occur if set to zero.

NOTE: Volume Remaining will not display for System Type 6.

The maximum ranges are the same as the maximum volume calculated on the main screen.

1. Press the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Depress the Extra Cycle button.

Volume Remaining (System)

Volume remaining in the system cannot be edited when displayed in this mode, except for the Lead unit. It can only be viewed on the Lag unit.

1. Depress the Extra Cycle button.

Valve Address

This diagnostic display is for 2 control valves or more in a system. Single valve systems (System 4) do not display this option.

1. Depress the Extra Cycle button.

Software Version

The electronic timer’s software program version number will be displayed.

1. Depress the Extra Cycle button to exit.

Hours Since Last Regeneration

The hours since the last regeneration will be saved and displayed.
1. Depress the Extra Cycle button.

Volume Remaining (This Tank Only)

Volume remaining in the current tank will be adjustable when displayed in this mode. Regeneration will occur if set to zero.

NOTE: Volume Remaining will not display for System Type 6.

The maximum ranges are the same as the maximum volume calculated on the main screen.

1. Press the Shift button to select the digit you want to modify.
2. Use Up or Down buttons to adjust this value.
3. Depress the Extra Cycle button.

Volume Remaining (System)

Volume remaining in the system cannot be edited when displayed in this mode, except for the Lead unit. It can only be viewed on the Lag unit.

1. Depress the Extra Cycle button.

Valve Address

This diagnostic display is for 2 control valves or more in a system. Single valve systems (System 4) do not display this option.

1. Depress the Extra Cycle button.

Software Version

The electronic timer’s software program version number will be displayed.

1. Depress the Extra Cycle button to exit.

NOTE: Diagnostic Mode programming will stop if the system goes into regeneration.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>QTY</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>42349</td>
<td>Motor, 24V, 2 RPM, 7000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10218</td>
<td>Switch, Micro</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40978</td>
<td>Plate, Upper Support</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>61729</td>
<td>Circuit Board Assy, 7000 NXT</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>40702</td>
<td>Shaft, Encoder, 7000</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>40703</td>
<td>Gear, Main</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>40704</td>
<td>Cam, Brine, Downflow</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>40979</td>
<td>Plate, Lower Support</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>61635-01</td>
<td>Cover Assy, 7000-II, Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61634-01</td>
<td>Cover Assy, 7000-II, Gray</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>40980-20</td>
<td>Backplate, 7000NXT</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>13602</td>
<td>Screw, Phil Rd Hd, 6-32 x 5/16</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12473</td>
<td>Screw, Hex Wsh, 10-24 x 5/8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>11805</td>
<td>Screw, Rd Hd, 4-40 x 5/8 Type 1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>61920-01</td>
<td>Transformer Assy, 7000NXT, 40VA, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61920-02</td>
<td>Transformer Assy, 7000NXT, 40VA, Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61920-03</td>
<td>Transformer Assy, 7000NXT, 40VA, Europe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61920-04</td>
<td>Transformer Assy, 7000NXT, 40VA, Australia</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>19791-01</td>
<td>Meter Cable Assy, Turbine/SE</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>41122</td>
<td>O-ring, -007</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>40960-03</td>
<td>Label, UL Nameplate, 7000, US/24</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>*7000 Complete Powerhead</td>
</tr>
</tbody>
</table>

Not Shown:
1. 61763 Kit, CAN Communication Cable

Call your distributor for Part Number
<table>
<thead>
<tr>
<th>Item No.</th>
<th>QTY</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>61050</td>
<td>Valve Body Assy, 7000, 32 mm Dist</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>61542-10</td>
<td>Piston Assy, 7000, Softener, D/F 35 gpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61453-10</td>
<td>Piston Assy, 7000, Softener, D/F 28 gpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61452-20</td>
<td>Piston Assy, 7000, Filter 35GPM</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>40576</td>
<td>Clip, H, Plastic, 7000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>61438</td>
<td>Seal & Spacer Kit, 7000, D/F</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>60016-01</td>
<td>Brine Valve Assy, 7000, 560CD</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>40577</td>
<td>Turbine Meter Assy, 7000</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>61XXX</td>
<td>Injector Assy, 7000</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>40556</td>
<td>Cap, Injector</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>61XXX</td>
<td>BLFC Assemblies</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>61XXX</td>
<td>DLFC Assemblies</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>43776</td>
<td>O-ring, -021, 7000, CSTM</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>13302-01</td>
<td>O-ring, -014, 560CD</td>
</tr>
</tbody>
</table>

Not Shown:

- 18280 Collector, Top, 1" x .011, Gray
- 19054 O-ring, -124
- 19054-01 O-ring, -124
- 61XXX DLFC Kits
- 40677 Tube, Distributor, 32MM
- 40924 Distributor, 32MM
- 40697-02 Collector, 32MM Bayonet
- 12763-10 Stuffer Tool Assy, 7000
- 40947-01 Plug, Brine Valve, w/O-ring
- 40990-01 Plug, Injector, w/O-ring
BYPASS ASSEMBLY

<table>
<thead>
<tr>
<th>Item No.</th>
<th>QTY</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...........1......</td>
<td>40569</td>
<td>Bypass Assembly, 7000, Less Clip</td>
<td></td>
</tr>
<tr>
<td>2...........2......</td>
<td>40563-01</td>
<td>Connector Assy, 1” NPT, w/O-ring</td>
<td></td>
</tr>
<tr>
<td>40563-11</td>
<td>Connector Assy, 1” BSP, w/O-ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40565-01</td>
<td>Connector Assy, 1 1/4” NPT w/O-ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40565-11</td>
<td>Connector Assy, 1 1/4” BSP w/O-ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3...........2......</td>
<td>41242-01</td>
<td>Connector Assy, 1” & 1/4” Sweat, w/O-ring</td>
<td></td>
</tr>
<tr>
<td>41243-01</td>
<td>Connector Assy, 1 1/4” & 1 1/2” Sweat, w/O-ring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4...........2......</td>
<td>40576</td>
<td>Clip, H, Plastic, 7000</td>
<td></td>
</tr>
<tr>
<td>5...........1......</td>
<td>40951</td>
<td>O-ring, -220</td>
<td></td>
</tr>
</tbody>
</table>

Not Shown:

1..............61462..............By-Pass Service Kit, 7000
Includes all internal parts for 7000 bypass assembly - bypass body not included
<table>
<thead>
<tr>
<th>Item No.</th>
<th>QTY</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>60014</td>
<td>Safety Brine Valve Assy, 2310</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>60068-30</td>
<td>Float Assy, 2310, w/30” Rod</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>60002-34</td>
<td>Air Check, #500</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

Detected Errors

NOTE: It can take up to 30 seconds for an error to be detected and displayed. All errors on each timer in the system must be displayed before the errors can be corrected.

If a communication error is detected, an Error Screen will alternate with the Main (time of day) Screen every few seconds.

• All units In Service remain in the In Service position.
• All units in Standby go to In Service.
• Any unit in Regeneration when the error occurs completes Regeneration and goes to In Service.
• No units are allowed to start a Regeneration Cycle while the error condition exists, unless they are manually forced into Regeneration.
• When an error is corrected and the error no longer displays (it may take several seconds for all of the units in a system to stop displaying the error message), the system returns to normal operation.

NOTE: During the error condition the control continues to monitor the flow meter and update the volume remaining. Once the error condition is corrected all units return to the operating status they were in prior to the error. Regeneration queue is rebuilt according to the normal system operation. Or, if more than one unit has been queued for regeneration, then the queue is rebuilt according to which one communicates first.

<table>
<thead>
<tr>
<th>Cause For Error</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more units have a missing or bad communication</td>
<td>Connect the communication cables and/or replace.</td>
</tr>
<tr>
<td>cable.</td>
<td></td>
</tr>
<tr>
<td>One or more units has a communication cable plugged into</td>
<td>Connect the communication cable as shown in the wiring diagrams.</td>
</tr>
<tr>
<td>the wrong receptacle.</td>
<td></td>
</tr>
<tr>
<td>One or more units is not powered.</td>
<td>Power all units.</td>
</tr>
</tbody>
</table>

Programming Errors

During the error condition the control continues to monitor the flow meter and update the volume remaining. Once the error condition is corrected all units return to the operating status they were in prior to the error and regeneration is queued according to the normal system operation. If reprogramming the unit in the Master Programming Mode clears the error, the volume remaining may be reset to the full unit capacity (i.e. as though it were just regenerated).

• All units in Standby go In Service.
• Any unit in regeneration when the error occurs completes regeneration and goes to In Service.
• No units are allowed to start a regeneration cycle while the error condition exists.

When the problem is corrected and the error no longer displays (it may take several seconds for all of the units in a system to stop displaying the error message), the system returns to normal operation.

Programming Errors Detected

• Duplicate unit addresses or numbers
• Size of system ex: if sized for a 4 units, and only have 2 units
• Display format mismatches

Solution

• Program the units correctly in the Master Programming Mode.

NOTE: If these errors are detected, numbers 1 through 3 become true, and the main screen (time of day) will alternate with an error screen.
TROUBLESHOOTING continued

Example Error Screens

Detected Error

\[\text{DETECTED ERROR=} \ E2 \ \text{RESET UNIT} \]

1. Go through Master Programming to program the unit.

No Message #1

\[\text{DETECTED ERROR=} \ \text{NO MESSAGE #1} \]

1. Make sure all communication cables are connected.
2. If “No Message #1” ensure it is the lead unit.
3. Ensure #1 is configured for the correct system type.

No Message #3

\[\text{DETECTED ERROR=} \ \text{NO MESSAGE #3} \]

1. Make sure all communication cables are connected.
2. If “No Message #3” ensure it is unit #3.
3. Ensure #3 is configured for the correct system type.

Program Mismatch

\[\text{DETECTED ERROR=} \ \text{PROGRAM MISMATCH} \]

1. Ensure the units on the network are not configured the same as #1/the Lead unit.

Exceed Unit Size

\[\text{DETECTED ERROR=} \ \text{EXCEED UNIT SIZE} \]

1. There are more units on the system than the Lead is programmed for.

Matching Address

\[\text{DETECTED ERROR=} \ \text{MATCHING ADDRESS} \]

1. The unit is programmed the same # as another unit.

NOTE: The rest of the system will still function without this unit.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water conditioner fails to regenerate.</td>
<td>Electrical service to unit has been</td>
<td>Assure permanent electrical service (check fuse, plug, pull chain, or switch).</td>
</tr>
<tr>
<td></td>
<td>interrupted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timer is defective.</td>
<td>Replace timer.</td>
</tr>
<tr>
<td></td>
<td>Power failure.</td>
<td>Reset time of day.</td>
</tr>
<tr>
<td>Hard water</td>
<td>By-pass valve is open.</td>
<td>Close by-pass valve.</td>
</tr>
<tr>
<td></td>
<td>No salt is in brine tank.</td>
<td>Add salt to brine tank and maintain salt level above water level.</td>
</tr>
<tr>
<td></td>
<td>Injector screen plugged.</td>
<td>Clean injector screen.</td>
</tr>
<tr>
<td></td>
<td>Insufficient water flowing into brine tank.</td>
<td>Check brine tank fill time and clean brine line flow control if plugged.</td>
</tr>
<tr>
<td></td>
<td>Hot water tank hardness.</td>
<td>Repeated flushings of the hot water tank is required.</td>
</tr>
<tr>
<td></td>
<td>Leak at distributor tube.</td>
<td>Make sure distributor tube is not cracked. Check O-ring and tube pilot.</td>
</tr>
<tr>
<td></td>
<td>Internal valve leak.</td>
<td>Replace seals and spacers and/or piston.</td>
</tr>
<tr>
<td>Unit used too much salt.</td>
<td>Improper salt setting.</td>
<td>Check salt usage and salt setting.</td>
</tr>
<tr>
<td></td>
<td>Excessive water in brine tank.</td>
<td>See “Excessive water in brine tank”.</td>
</tr>
<tr>
<td>Loss of water pressure.</td>
<td>Iron buildup in line to water conditioner.</td>
<td>Clean line to water conditioner.</td>
</tr>
<tr>
<td></td>
<td>Iron buildup in water conditioner.</td>
<td>Clean control and add mineral cleaner to mineral bed. Increase frequency of regeneration.</td>
</tr>
<tr>
<td></td>
<td>Inlet of control plugged due to foreign material broken loose from pipes by recent work done on plumbing system.</td>
<td>Remove piston and clean control.</td>
</tr>
<tr>
<td>Loss of mineral through drain line.</td>
<td>Air in water system.</td>
<td>Assure that well system has proper air eliminator control. Check for dry well condition.</td>
</tr>
<tr>
<td></td>
<td>Improperly sized drain line flow control.</td>
<td>Check for proper drain rate.</td>
</tr>
<tr>
<td>Iron in conditioned water.</td>
<td>Fouled mineral bed.</td>
<td>Check backwash, brine draw, and brine tank fill. Increase frequency of regeneration. Increase backwash time.</td>
</tr>
<tr>
<td>Excessive water in brine tank.</td>
<td>Plugged drain line flow control.</td>
<td>Clean flow control.</td>
</tr>
<tr>
<td></td>
<td>Plugged injector system.</td>
<td>Clean injector and screen.</td>
</tr>
<tr>
<td></td>
<td>Timer not cycling.</td>
<td>Replace timer.</td>
</tr>
<tr>
<td></td>
<td>Foreign material in brine valve.</td>
<td>Replace brine valve seat and clean valve.</td>
</tr>
<tr>
<td></td>
<td>Foreign material in brine line flow control.</td>
<td>Clean brine line flow control.</td>
</tr>
<tr>
<td>Softener fails to draw brine.</td>
<td>Drain line flow control is plugged.</td>
<td>Clean drain line flow control.</td>
</tr>
<tr>
<td></td>
<td>Injector is plugged.</td>
<td>Clean injector.</td>
</tr>
<tr>
<td></td>
<td>Injector screen plugged.</td>
<td>Clean screen.</td>
</tr>
<tr>
<td></td>
<td>Line pressure is too low.</td>
<td>Increase line pressure to 20 psi (1.3 bar).</td>
</tr>
<tr>
<td></td>
<td>Internal control leak</td>
<td>Change seals, spacers, and piston assembly.</td>
</tr>
<tr>
<td></td>
<td>Service adapter did not cycle.</td>
<td>Check drive motor and switches.</td>
</tr>
<tr>
<td>Control cycles continuously.</td>
<td>Misadjusted, broken, or shorted switch.</td>
<td>Determine if switch or timer is faulty and replace it, or replace complete power head.</td>
</tr>
<tr>
<td>Drain flows continuously.</td>
<td>Valve is not programming correctly.</td>
<td>Check timer program and positioning of control. Replace power head assembly if not positioning properly.</td>
</tr>
<tr>
<td></td>
<td>Foreign material in control.</td>
<td>Remove power head assembly and inspect bore. Remove foreign material and check control in various regeneration positions.</td>
</tr>
<tr>
<td></td>
<td>Internal control leak</td>
<td>Replace seals and piston assembly.</td>
</tr>
<tr>
<td>No hard water bypass solenoid not operating</td>
<td>Incorrect power transformer.</td>
<td>Replace with 40VA transformer (P/N 61920-0X).</td>
</tr>
</tbody>
</table>
WATER CONDITIONER FLOW DIAGRAMS

In Service Position

Backwash Position

1st Backwash Cycle

2nd Backwash Cycle

Salt
Brine
Air Check

Inlet
Outlet

Resin Level

Drain
inlet

Salt
Brine
Air Check

Resin Level

40988 Rev A

41121 Rev A

40988 Rev A

41121 Rev A
WATER CONDITIONER FLOW DIAGRAMS

continued

Second Backwash Position

Rapid Rinse Position
WATER CONDITIONER FLOW DIAGRAMS

continued

Brine Tank Refill Position

1. Unplug the power source.
2. With a 3/8" nut driver, turn the cycle cam counter-clockwise to the position shown in the illustration above.
3. Remove brine cam if equipped.
4. Slightly pull the two tabs outward and push the gearbox slightly upward to remove.
5. When returning the valve to service after powerhead disassembly, manually step valve through regeneration using the Extra Cycle button until the valve is In Service.

REMOVING THE GEAR BOX ASSEMBLY

Figure 7
INSERTING THE CIRCUIT BOARD

1. To insert circuit board, align notches on left side of board with flexible finger on power head. Apply pressure to left while rotating the board back.

2. When all the way down, snap the circuit board into place under the notches on the right.

CONNECTING THE CIRCUIT BOARD

After the circuit board is installed:

1. Connect the motor wires to the motor connector on the circuit board.
2. Connect the transformer cable to the transformer connector on the circuit board.
3. Connect transformer grounding cable to grounding screw on top corner of circuit board.
4. Connect the meter cable to the meter cable connector on the circuit board.
5. Connect the meter cable sensor end to the opening on the valve body.
6. Thread the meter cable and power cable along the path shown in the above illustration.
7. Insert screw to secure circuit board.
DIMENSIONAL DRAWINGS

61500-7000XTR-LNE Rev A

FLECK 7000 NXT Service Manual

28
7000NXT VALVE

- Softener Valve 35 GPM w/Meter and 32mm Distributor Pilot
 - Cv = 9.2
- Filter Valve w/32mm Distributor Pilot
 - Cv = 8.9
- Softener Valve 28 GPM w/Meter and 1 in. Distributor Pilot
 - Cv = 7.2

Pressure Drop (PSID) vs. Service Flow (GPM)

TR18753 Softener
TR18688 Filter
41140-02 Rev A
INJECTOR FLOW DATA

Injector #000

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #00

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #0

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #1

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #2

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

2.5

2.0

1.5

1.0

0.5

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #3

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

2.5

2.0

1.5

1.0

0.5

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #4

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

4

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

0 20 40 60 80 100 120

Total

Rinse

Draw

Injector #5

3/8" Brine System

Injector Flow (GPM)

Pressure (PSI)

4

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

0 20 40 60 80 100 120

Total

Rinse

Draw

A) Total Flow, 3/8" Brine System B) Total Flow, 1/2" Brine Line C) Rinse D) Brine Draw, 3/8" Brine System E) Brine Draw, 1/2" Brine Line

NOTE: All data taken with 2310 Safety Brine Valve and 500 Air Check

TR18755 Rev B
SERVICE ASSEMBLIES

Brine Line Flow Control (BLFC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>61450-00</td>
<td>BLFC, 3/8", Blank</td>
<td></td>
</tr>
<tr>
<td>61450-12</td>
<td>BLFC, 3/8", 0.125 GPM</td>
<td></td>
</tr>
<tr>
<td>61450-25</td>
<td>BLFC, 3/8", 0.25 GPM</td>
<td></td>
</tr>
<tr>
<td>61450-50</td>
<td>BLFC, 3/8", 0.5 GPM</td>
<td></td>
</tr>
<tr>
<td>61450-100</td>
<td>BLFC, 3/8", 1.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61451-00</td>
<td>BLFC, 1/2", Blank</td>
<td></td>
</tr>
<tr>
<td>61451-12</td>
<td>BLFC, 1/2", 0.125 GPM</td>
<td></td>
</tr>
<tr>
<td>61451-25</td>
<td>BLFC, 1/2", 0.25 GPM</td>
<td></td>
</tr>
<tr>
<td>61451-50</td>
<td>BLFC, 1/2", 0.5 GPM</td>
<td></td>
</tr>
<tr>
<td>61451-100</td>
<td>BLFC, 1/2", 1.0 GPM</td>
<td></td>
</tr>
</tbody>
</table>

Drain Line Flow Controls

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>61455-00</td>
<td>DLFC, 3/4", Blank</td>
<td></td>
</tr>
<tr>
<td>61455-17</td>
<td>DLFC, 3/4", 1.7 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-20</td>
<td>DLFC, 3/4", 2.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-24</td>
<td>DLFC, 3/4", 2.4 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-30</td>
<td>DLFC, 3/4", 3.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-35</td>
<td>DLFC, 3/4", 3.5 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-40</td>
<td>DLFC, 3/4", 4.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-45</td>
<td>DLFC, 3/4", 4.5 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-50</td>
<td>DLFC, 3/4", 5.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-60</td>
<td>DLFC, 3/4", 6.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61455-70</td>
<td>DLFC, 3/4", 7.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-00</td>
<td>DLFC, 1", Blank</td>
<td></td>
</tr>
<tr>
<td>61456-80</td>
<td>DLFC, 1", 8.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-90</td>
<td>DLFC, 1", 9.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-10</td>
<td>DLFC, 1", 10.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-12</td>
<td>DLFC, 1", 12.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-15</td>
<td>DLFC, 1", 15.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-20</td>
<td>DLFC, 1", 20.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-25</td>
<td>DLFC, 1", 25.0 GPM</td>
<td></td>
</tr>
<tr>
<td>61456-30</td>
<td>DLFC, 1", 30.0 GPM</td>
<td></td>
</tr>
</tbody>
</table>

Injectors

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61454-000</td>
<td>#000</td>
</tr>
<tr>
<td>61454-00</td>
<td>#00</td>
</tr>
<tr>
<td>61454-0</td>
<td>#0</td>
</tr>
<tr>
<td>61454-1</td>
<td>#1</td>
</tr>
<tr>
<td>61454-2</td>
<td>#2</td>
</tr>
<tr>
<td>61454-3</td>
<td>#3</td>
</tr>
<tr>
<td>61454-4</td>
<td>#4</td>
</tr>
<tr>
<td>61454-5</td>
<td>#5</td>
</tr>
</tbody>
</table>

Transformers

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61920-01</td>
<td>Transformer Assy, 7000NXT, 40VA, US</td>
</tr>
<tr>
<td>61920-02</td>
<td>Transformer Assy, 7000NXT, 40VA, Japan</td>
</tr>
<tr>
<td>61920-03</td>
<td>Transformer Assy, 7000NXT, 40VA, Europe</td>
</tr>
<tr>
<td>61920-04</td>
<td>Transformer Assy, 7000NXT, 40VA, Australia</td>
</tr>
</tbody>
</table>