AURORA® 790 SERIES
Constant Pressure Booster Systems with Stackable Pumps

Capacities to 1200 GPM (272.5 M₃/HR)
Pressures to 346 psi (244 M)
Potable Water Application

Constant Pressure Pumping Introduction
CP Boss, Aurora’s packaged constant pressure booster systems are designed to meet the ever increasing demand of variable flows in high-rise, commercial, municipal and industrial buildings. These PLC based systems are available in vertical configurations. Easy to select and install, pre-engineered duplex and triplex units are available for quick delivery. Each system is performance tested for trouble free operation and ease of installation and start-up.

Feature Selector

Standard Features
• UL labeled pressure sensing control panel
• PLC pump sequence controller
• Duplex or triplex
• Vertical configurations
• Vertical stackable pumps
• High efficiency motors
• Steel manifolds
• Complete factory test
• Pilot operated pressure regulating valves
• Maximum pressure up to 175 psi, maximum flows up to 1200 GPM
• Single source responsibility

Optional Features
• ASME rated steel bladder tank
• Galvanized, copper or stainless steel headers
• Special control panels
• Current sensing or flow sensing
• Simplex, quadruplex designs
• Specially engineered booster systems for higher flows and pressures

Packaged constant pressure booster systems described in this bulletin are used in offices and high rise buildings.
A. Completely Assembled
and prewired for easy installation.

B. Pressure Sensing Control Panel
The programmable controller incorporated into the UL listed NEMA 1 Control Panel
readily allows for the addition of optional control functions and alarm features.

C. Systems
feature Aurora 390 Series vertical multi-stage in-line pumps in stainless
steel construction.
- High temp/high pressure mechanical Seal. Cartridge Design allows replacing
 seal without removing the motor.
- All wetted components of Aisi 304 stainless steel for corrosion resistance.
- Tungsten carbide vs ceramic bushings for long life at high temperatures.

D. Pressure Reducing
valves automatically reduce higher inlet pressure to a constant downstream
pressure regardless of changing flow rate or inlet pressure. Pilot control settings
are readily accessible and are easy to adjust. Return flow is prevented through
built in check valves. For some applications where constant discharge pressure
is not critical or where suction pressure is relatively constant as with a reservoir,
silent check valves may be substituted for pressure reducing valves.

E. Pressure Gauges
are located on panel.

F. Steel Manifolds
are painted Aurora blue for corrosion resistance and to meet various local codes.
Flanged connections provide easy installation. All piping is schedule 40.

G. Welded Groutable Steel Base
provides complete support while still allowing the unit to be readily maneuvered
for installation.

H. Full-Port Ball Valves
provided on each pump suction and discharge branch will allow individual pumps
to be serviced without interrupted operation.

I. Thermal Relief Valve
is installed in pump casing to prevent overheating and pump failure. The valve will
automatically sense the rise in temperature and discharge some of the hot fluid
causing the cooler fluid to enter the casing and the valve will then close.

J. Hydropneumatic Pressure Tank
(not illustrated) can be optionally provided to maintain system pressure during
periods of low demand. Depending on specific application, the tank can be located
adjacent to the system in the equipment room, remotely located, or mounted with
the system on the common baseplate.
Pump and System Selection

All packaged booster systems have a desired discharge pressure and a given suction pressure from the city water system, or from a suction tank. Individual pump boost pressure is usually the system boost plus the friction losses within the booster system pipe, fittings, and pressure reducing valves. Individual pump flow is usually two equal sized pumps on a duplex system, and a percentage such as 20% + 40% + 40% = 100% for a triplex system. Determine the system flow and boost as well as individual pump flow and boost.

1) Total system flow in GPM______________
 Determine required flow per pump in GPM
 (Total system flow ÷ No. of pumps)
 P1______________
 P1______________
 P1______________

2) Determine system manifold size
 0 – 140 GPM 2"
 141 – 300 GPM 3"
 301 – 600 GPM 4"
 601 – 1000 GPM 6"

3) Determine pump head (TDH)
 A: Desired pressure at system discharge manifold
 _______psig
 B: Minimum pump suction pressure_______psig
 (City supply or tank)
 Determine PRV size(s)

4) Select required pumps and motors using Aurora H2Optimize
 or the current Aurora Pump catalog
Performance Data

Individual performance curves should be checked
for final selection. For selections not shown on
this chart please refer to factory.

2880 R.P.M.

3450 R.P.M.
Model Diagrams

DUPLEX

DUPLEX WITH TANK
Model Diagrams

TRIPLEX

TRIPLEX WITH TANK
Engineering Specifications

The contractor shall furnish and install an Aurora variable flow (duplex or triplex) constant pressure booster system as manufactured by Aurora Pump. The unit shall have a total system capacity of ___GPM at a discharge head of ___feet when supplied with a working suction head of ___feet. Each pump shall be sized as indicated for a % of the total flow.

Duplex System
- Pump P1 = ___GPM ___%System
- Pump P2 = ___GPM ___%System

Triplex System
- Pump P1 = ___GPM ___%System
- Pump P2 = ___GPM ___%System
- Pump P3 = ___GPM ___%System

Piping and Valves
Each system shall be skid mounted, completely assembled and wired on a groutable steel base ready for installation. All piping shall be schedule 40 Steel pipe. Each system shall include suction and discharge ball valves for each pump suction and discharge, combination pressure regulating/non-slam check valves for each pump, flanged connections for easy installation and pipe supports for the upper manifold. Suction and discharge pressure gauges shall be provided. Gauges shall have 3-1/2” faces with large scale numerals and individual air bleed type valves.

Pumps
The pumps shall be Aurora vertical multi-stage in line pumps. Each pump shall be constructed with 304 stainless steel impellers and diffusers, a high temperature mechanical seal with carbon vs silicon carbide, EPDM elastomer through out, tungsten carbide against ceramic pump bushings and a cast iron motor bracket. Flanges will be ductile or cast iron in slip ring (and isolated from liquid).

Motors
The motors shall be NEMA C-FACE, ____hp, 3 phase, 60 hertz, ____ volt, ODP, high-efficiency. Motors shall be selected so that they do not exceed their nameplate hp rating through their entire range of operation.

Control Panel—Pressure Sensing
Each system shall have a mounted and wired UL Listed NEMA I control panel with individual magnetic motor starters, ambient compensated overload relays on each phase, individual motor fuseblocks with fuses, main circuit disconnect switch with door interlock, 110 volt control transformer with primary and secondary fuses. The panel shall be suitable for the horsepower and voltage of the motors. The Control Panel will incorporate a programmable logic controller with pressure-sensing logic and have the following features:

- On and Off delays factory set to system operating characteristics to prevent short cycling of pumps.
- Individual pump run lights and selector switches
- Failure logic and indicating light to activate second pump if lead pump malfunctions.
- Automatic Lead/Lag pump alternation
- Low suction pressure shutdown with alarm light, horn and reset button.

Testing
The entire system shall be tested at the factory to assure proper sequencing to meet the design flows and pressure; and the system components shall be adjusted at the factory.

Services
The pump manufacturer shall assume unit responsibility and shall provide a factory trained engineer to supervise initial start-up to insure proper operation and to instruct the operating personnel in the operation and maintenance of the system.