SSM33I
SUMP/EFFLUENT PUMPS
(115 Volt-Single Phase Only)

SRM4
SUMP/EFFLUENT/SEWAGE PUMPS
(115 or 230 Volt-Single Phase)
TYPICAL SECTION DRAWING FOR SSM33/SSM33I SERIES

- **20** Piggy-Back Control
 - Control Vertical Float Switch
 - 10’ Cord
 - Control Vertical Float Switch
 - 20’ Cord. Not Shown
 - (Automatic Only)

- **21** Cable Tie. Not Shown
 - (Automatic Only)
TYPICAL SECTION DRAWING FOR SRM4 SERIES

20 Piggy-Back Control
21 Cable Tie
Not Shown
(Automatic Only)
PARTS LIST SSM33/SSM33I AND SRM4

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>No. Description</th>
<th>Part Req’d</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ring, Lift</td>
<td>1</td>
<td>26230A000</td>
</tr>
<tr>
<td>3</td>
<td>Plug, 1/4” NPT</td>
<td>1</td>
<td>05022A056</td>
</tr>
<tr>
<td>4</td>
<td>Plate, Name (Not Stamped)</td>
<td>1</td>
<td>23780A000</td>
</tr>
<tr>
<td>5</td>
<td>Tapping, Screw (SSM33/SSM33I)</td>
<td>1</td>
<td>09822A032</td>
</tr>
<tr>
<td>5A</td>
<td>Tapping, Screw (SRM4P Auto.)</td>
<td>1</td>
<td>09822A006</td>
</tr>
<tr>
<td>6</td>
<td>Screw, Cap #10 x ¾” Vertical Float Switch</td>
<td>2</td>
<td>18475A004</td>
</tr>
<tr>
<td>7</td>
<td>Oil, Transformer (1 Qt. In Can)</td>
<td>1</td>
<td>11009A002</td>
</tr>
<tr>
<td>8</td>
<td>Rotor with Shaft (SSM33/SSM33I)</td>
<td>1</td>
<td>22821A000</td>
</tr>
<tr>
<td>9</td>
<td>Washer, Thrust, SST</td>
<td>1</td>
<td>05030A243</td>
</tr>
<tr>
<td>10</td>
<td>Washer, Thrust, Graphite</td>
<td>1</td>
<td>05030A244</td>
</tr>
<tr>
<td>11</td>
<td>Housing, Motor</td>
<td>1</td>
<td>23770D002</td>
</tr>
<tr>
<td>12</td>
<td>Housing w/Stator</td>
<td>1</td>
<td>23770D060K</td>
</tr>
<tr>
<td>13</td>
<td>Gasket, Rubber</td>
<td>1</td>
<td>05014A172</td>
</tr>
<tr>
<td>14</td>
<td>Screw, Cap, 1/4-20 x 7/8 Lg. (SSM33/SSM33I) (SRM4)</td>
<td>3</td>
<td>18475A003</td>
</tr>
<tr>
<td>15</td>
<td>Case, Volute (SSM33)</td>
<td>1</td>
<td>23771D001</td>
</tr>
<tr>
<td>16</td>
<td>Impeller (SSM33)</td>
<td>1</td>
<td>23771D101</td>
</tr>
<tr>
<td>17</td>
<td>Plate, Bottom, with Volute Case</td>
<td>1</td>
<td>27005D000</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Pump Catalog Number</th>
<th>Pump Switch</th>
<th>V</th>
<th>Ph</th>
<th>Cord, Electric</th>
<th>Cord Length</th>
<th>Stator Only</th>
<th>Winding Resistance in Ohms</th>
<th>Max. Amps</th>
<th>Locked Rotor Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM33IM1C</td>
<td>Manual</td>
<td>1/3</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>SSM33IP-1</td>
<td>Automatic</td>
<td>1/3</td>
<td>115</td>
<td>21628B046</td>
<td>10"</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>SSM33IPC-1</td>
<td>Automatic</td>
<td>1/3</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>SSM33IPV1</td>
<td>Automatic</td>
<td>1/3</td>
<td>115</td>
<td>21628B046</td>
<td>10"</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>SSM33IPV1C</td>
<td>Automatic</td>
<td>1/3</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>SRM4M1C</td>
<td>Manual</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>SRM4M2C</td>
<td>Manual</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>SRM4P-1</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B046</td>
<td>10"</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>SRM4PC-1</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B026</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>SRM4P-2</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>SRM4V-1</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>SRM4V-2</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>SRM4D-1</td>
<td>Automatic</td>
<td>4/10</td>
<td>115</td>
<td>21628B048</td>
<td>20"</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>
NOTE: READ THESE INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL PUMP.

DESCRIPTION AND APPLICATION
SSM33, SSM33I and SRM4
Myers SSM33, SSM33I and SRM4 Series Pumps are single seal units, available in automatic or manual. The SSM33 and SSM33I series pumps are designed for normal sump and dewatering, and can also be used in effluent applications. When used in effluent dosing or S.T.E.P. applications, the pump must be installed in a separate tank or compartment at the discharge side of the septic tank. NEVER INSTALL PUMP IN MAIN TANK WHERE SLUDGE COLLECTS. DO NOT USE THE SSM33 OR SSM33I PUMP SERIES FOR RAW SEWAGE. The SRM4 series pumps are designed for residential sewage and dewatering applications where a larger solid size is required.

General
The SSM33, SSM33I and SRM4 pumps use shaded pole, 1550 RPM motors. SSM33 and SSM33I are available in 115 volt only and the SRM4 is available in 115 or 230 volt and all are single phase only. Both the manual and automatic models come standard with a 10 ft. power cord. A 20 ft. cord and switch length are optionally available. All automatic models come with a mechanical (mercury free) piggy-back float switch or a vertical float switch. The SSM33 and SSM33I pumps are designed to handle 1/2" spherical solids and have a 2" NPT discharge threading. The SRM4 pumps are designed to handle 2" spherical solids and have a 2" NPT discharge threading. The SSM33, SSM33I and the SRM4 use an engineered thermoplastic vortex impeller designed to efficiently produce the required pressures and flows.

WARNING! THESE PUMPS ARE NOT APPROVED FOR, AND SHOULD NOT BE USED IN SWIMMING POOLS, FOUNTAINS OR PUMPING POTABLE (DRINKING) WATER.

AIR LOCKING
A pump is said to be air locked if water traps air in the pump and it cannot get out, thus preventing the pump from operating. The SSM33, SSM33I and SRM4 sump pumps have a 1/16” air vent hole in the impeller chamber to let out trapped air. If this hole becomes plugged, pump may air lock. As a secondary precaution a 1/8” hole should be drilled in the discharge pipe below the check valve. The check valve should be 12 to 18 inches above pump discharge. Do not put check valve directly into pump discharge opening.

PACKAGING
Each pump is packaged separately in a carton marked with a catalog number and Myers engineering number. The pumps are carefully packaged to prevent damage in shipping. However, occasionally damage may result due to rough handling. Carefully go over the pump and check for damage that could cause the pump to fail.

LEVEL CONTROLS
The automatic models come with 10’ or 20’ power cord and mechanical (mercury free), piggy-back float switch. The 115 or 230 volt piggy-back switch is tethered directly to the pump. The switch can optionally be mounted to the discharge pipe using a minimum 3-5/8” tether length. The switch must float free from pump and basin wall. Plug the switch cord plug into a properly grounded, rated voltage receptacle. Plug the power cord into the back of the switch cord and tape the cords to the discharge pipe every 12”. The power receptacle must be located outside the wet sump or basin due to the DANGER of current leakage.

On all duplex units or simplex installations with additional options like high water alarm, the power cord plug must be cut off and wired into a control panel or into a sealed junction box if used in wet sump or basin. The AWS-1 control also acts as a sealed junction box for connecting power cord to pump cord.

DESIGN OF PRESSURE SEWER SYSTEMS
Myers has available complete computer SOFTWARE for designing PRESSURE SEWER SYSTEMS. This gives pipe sizes to use and gives exact flow from any pump or group of pumps in the system when operating simultaneously.

This design DISK for IBM® or COMPATIBLE computers is available to engineers on request.

MOTOR TYPE
The motors used in these pumps are pressed into the cast iron housings and surrounded by dielectric oil for superior heat transfer. Both models use a shaded pole, 1550 RPM motor. The SSM33 and SSM33I are rated at 1/3 HP and the SRM4 is rated at 4/10 HP. All units have class A motor insulation. SSM33 and SSM33I are available in 115 volt, single phase only and SRM4 is available in 115 or 230 volt, single phase. All have overload protection, and use a double sleeve bearing design. These pumps have no starting switches and do not require a control panel for simplex installation.

SAFETY WARNINGS
WARNING: Risk of electric shock. Pumps are supplied with a grounding conductor and grounding-type attachment plug on the power cord. To reduce the risk of electric shock, be certain that it is connected only to a properly grounded, grounding-type receptacle. DO NOT cut off ground pin or use an adapter fitting. DO NOT use an extension cord with this pump.

All pumps have a GROUND WIRE that is connected to the motor. This wire goes to the receptacle or control panel which must be connected to a good outside GROUND.

When wiring this pump follow all local electrical and safety codes and ordinances as well as the most recent National Electric Code (NEC-ANSI/NFPA 70).

CALIFORNIA PROPOSITION 65 WARNING:

⚠️ WARNING This product and related accessories contain chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.
CSA APPROVED

All pumps have CSA approval. Myers is a SSPMA certified pump member.

INSTALLATION

WARNING: Basin or tank must be vented in accordance with local plumbing codes. These pumps are not designed for and CANNOT be installed in locations classified as hazardous in accordance with the National Electric Code ANSI/NFPA 70.

CAUTION: Never enter pump chamber after sewage or effluent has been in basin. Sewage water can give off methane, hydrogen sulfide and other gasses which are highly poisonous. For this reason, Myers recommends installing effluent pumps with a quick removal system. The quick removal system may be a union or coupling if the pipe or discharge hose is within reach from the surface, or a rail system type quick disconnect on deeper installations. See installation drawings for suggested installation.

The dosing tank or pumping chamber must be constructed of corrosion resistant materials and must be capable of withstanding all anticipated internal and external loads. It also must not allow infiltration or exfiltration. The tank must have provisions for anti-buoyancy. Access holes or covers must be adequate size and be accessible from the surface to allow for installation and maintenance of the system. Access covers must be lockable or heavy enough to prevent easy access by unauthorized personnel. The pumping chamber holding capacity should be selected to allow for emergency conditions.

The discharge pipe must be the same size as the pump discharge 1-1/2” for SSM33 and SSM33I, 2” for SRM4 or larger. In order to insure sufficient fluid velocity to prevent any residual solids from collecting in the discharge pipe, it is recommended that a minimum flow of 2’ per second be maintained. (12 GPM through 1-1/2” pipe, 21 GPM through 2” pipe and 46 GPM through 3” pipe). It is recommended that PVC or equal pipe is used for corrosion resistance. A full flow (ball or gate) shut off valve must be installed to prevent backflow of effluent if the pump must be removed for service. A check valve must be installed on pressure sewer systems and on other systems where conditions allow to prevent backflow and to reduce wear on the pump system.

A high water alarm must be installed on a separate circuit from the pump circuit. The alarm should have the ability to be tested for proper operation.

POINTS TO CHECK IF PUMP DOES NOT RUN OR DOES NOT RUN PROPERLY

(1) Pump does not run or start when water is up in tank.
 (a) Check for blown fuse or tripped circuit breaker.
 (b) Check for defective level switch
 (c) Where control panel is used be sure H-O-A switch is in the AUTO position. If it does not run, turn switch to the HAND position and if the pump runs then the trouble is in the automatic electrical system. Have ELECTRICIAN make electrical checks.
 (d) Check for burned out motor. Occasionally lightning can damage a motor even with lightning protection.
 (e) Where plug-in cords are used be sure contact blades are clean and making good contact. DO NOT USE PLUG-IN CORDS INSIDE A SUMP OR WET WELL.
 (f) Level control ball or weight may be stuck on side of basin. Be sure it floats freely.

(2) Pump runs but does not deliver flow.
 (a) Check for airlock. Start and stop pump several times, if this does not help it may be necessary to loosen a union in the discharge line to relieve airlock.
 (b) Check valve may be installed backwards. Check flow arrow on valve body. Check shut-off valve. It may be closed.
 (c) Check vertical elevation. It may be higher than pump can develop. (See pump curve).
 (d) Pump inlet may be plugged. Remove pump to check.

CAUTION: ALWAYS UNPLUG POWER CORDS OR TURN OFF ALL MAIN AND BRANCH CIRCUIT BREAKERS BEFORE DOING ANY WORK ON THE PUMP. If control panel is remote from pump, disconnect lead wires to motor so that no one can turn the circuit breaker back on.

BEFORE DISMANTLING PUMP FOR REPLACEMENT OF PARTS

Clean pump thoroughly. Knock off all scale and deposits. Submerge complete unit on Clorox solution for one hour before taking apart.
TYPICAL SUMP INSTALLATION FOR SSM33/SSM33I Series
TYPICAL SUMP INSTALLATION FOR SRM4 SERIES
CAUTION: FOR ANY WORK ON PUMP OR SWITCH, ALWAYS UNPLUG POWER CORD. DO NOT JUST TURN OFF CIRCUIT BREAKER OR UNSCREW FUSE.

TO REPLACE AUTOMATIC FLOAT
(1) Unplug the pump power cord from the back of the piggyback float plug.
(2) Unplug the piggy-back float plug from the power receptacle.
(3) Remove the two mounting screws in the switch bracket that attached the switch assembly to the pump and remove from the discharge piping.
(4) Mount new switch assembly to pump. Be sure to install plastic tie provided and re-tether to mounting screw.
(5) Cable tie or tape the power and switch cords to the discharge piping.
(6) Plug the switch into the power receptacle.
(7) Plug the power cord into the switch plug.
(8) Fill basin and test switch operation.

ALL PUMP REPAIRS SHOULD BE DONE AT AN AUTHORIZED MYERS SERVICE CENTER.

TO REPLACE THE AUTOMATIC VERTICAL FLOAT SWITCH
(1) Unplug the pump power cord from the back of the piggy-back plug.
(2) Unplug the piggy-back plug from the power receptacle.
(3) Remove the three cap screws holding the volute case onto the seal plate. Lift the motor assembly up and out of the volute case.
(4) Carefully remove the new seal assembly from the package. Add a film of new oil to the rubber O.D. on the stationary portion (carbon), and insert into the seal cavity on the volute casing. Using a pushing tool (a piece of PVC pipe works well), push on the rubber portion of the stationary seal until it is evenly seated into the seal cavity. With a clean cloth, carefully wipe the seal face.
(5) Replace the suction bottom onto the volute casing and retain with the six screws. Evenly tighten screws.
(6) Replace oil in the motor housing using only Myers submersible transformer oil. The level should be 3/4" below the top of the motor housing. Check with dip stick to assure that the pump is properly filled.
(7) Plug pump into grounded receptacle to test operation. Pump must run quiet and free of vibration.

SRM4 SHAFT SEAL REPLACEMENT
(1) Remove the oil fill plug located on the top of the motor housing and drain the oil in the housing. Properly dispose of the used oil. Do not reuse old oil since it may contain water from seal failure.
(2) Remove the three cap screws holding the volute case onto the seal plate. Lift the motor assembly up and out of the volute case.
(3) Lay the motor assembly on its side. Insert a slotted screwdriver into the slot in the center of the shaft. With a rubber mallet, carefully tap the impeller in a counter rotating direction while holding the shaft with the screwdriver.
(4) Remove the rotating portion (ceramic) of the seal with fingers. Pry on the stationary portion (carbon) with a pair of slotted screwdrivers to remove from volute casing. Discard the old seal assembly parts. NEVER USE OLD SEAL PARTS. REBUILD PUMP WITH ONLY NEW SEAL ASSEMBLY.
(5) Thoroughly clean the shaft and volute casing with a clean cloth. If the drained oil showed signs of water, then the motor should be air dried for several days to remove any remaining moisture.
(6) Carefully remove the new seal assembly from the package. Add a film of new oil to the rubber O.D. on the stationary portion (carbon), and insert into the seal cavity on the volute casing. Using a pushing tool (a piece of PVC pipe works well), push on the rubber portion of the stationary seal until it is evenly seated into the seal cavity. With a clean cloth, carefully wipe the seal face.
(7) Replace the suction bottom onto the volute casing and retain with the six screws. Evenly tighten screws.
(8) Place the impeller onto the shaft. Screw the impeller clockwise onto the shaft using a screwdriver to hold the shaft from turning and tighten impeller. Check to see that the impeller spins freely after tightening.

9
(9) Place the pump motor assembly upright and set it into the volute case. Replace the four cap screws and tighten.

(10) Replace oil in the motor housing using only Myers submersible transformer oil. The level should be 3/4" below the top of the motor housing. Check with dip stick to assure that the pump is properly filled.

(11) Plug pump into grounded receptacle to test operation.

POWER CORD REPLACEMENT

1. Loosen the plastic compression nut that retains the power cord. Slide nut out of the motor housing.
2. Pull the power cord from the motor housing by hand. The cord may need to be wiggled back and forth several times to loosen from the housing. Pull the power cord out until the connecting wires are fully exposed. Disconnect the motor power and ground leads with a pair of pliers.
3. Reconnect the motor power leads and ground to the new power cord. The ground terminal on the power cord has a male connector, and the power terminals on the new power cord are female.
4. Carefully push the connected wires into the motor housing until the molded body of the power cord seats. Make sure that the wires stay away from the rotor and shaft. Slide the nut into place and hand tighten. Tighten the nut with 13/16" wrench until snug, but do not over tighten.
5. Plug pump into grounded receptacle to test operation. Pump must run quiet, free of vibration, without tripping out breaker.

MOTOR REPLACEMENT

1. Disconnect the power cord and drain the oil as noted in the previous sections. If the oil shows signs of water or other contamination, it may be necessary to replace the seal assembly as noted in a previous section.
2. Loosen and remove the three cap screws retaining the motor housing. Lift the motor housing off of the pump assembly.
3. Remove the O-ring from the remaining pump assembly.
4. Position new motor housing (with new stator), onto the pump assembly. Align the screw bosses, and insert the three cap screws. Evenly tighten the cap screws.
5. Reinstall the power cord as noted in the previous section.
6. Replace oil in the motor housing using only Myers submersible transformer oil. The level should be 3/4" below the top of the motor housing. Check with dip stick to assure that the pump is properly filled.
7. Plug pump into grounded receptacle to test operation. Pump must run quiet, free of vibration, without tripping out breaker.

PERFORMANCE CURVES

![Performance Curves](image_url)
Limited Warranty

Myers® warrants to the original consumer purchaser (“Purchaser” or “You”) of the products listed below, that they will be free from defects in material and workmanship for the Warranty Period shown below.

<table>
<thead>
<tr>
<th>Product</th>
<th>Warranty Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet pumps, small centrifugal pumps, submersible pumps and</td>
<td>whichever occurs first:</td>
</tr>
<tr>
<td>related accessories</td>
<td>12 months from date of original installation,</td>
</tr>
<tr>
<td></td>
<td>or 18 months from date of manufacture</td>
</tr>
<tr>
<td>Fibrewound Tanks</td>
<td>5 years from date of original installation</td>
</tr>
<tr>
<td>Steel Pressure Tanks</td>
<td>5 years from date of original installation</td>
</tr>
<tr>
<td>Sump/Sewage/Effluent Products</td>
<td>12 months from date of original installation,</td>
</tr>
<tr>
<td></td>
<td>or 36 months from date of manufacture</td>
</tr>
<tr>
<td>Wastewater Solids Handling Pumps</td>
<td>12 months from date of shipment from factory,</td>
</tr>
<tr>
<td></td>
<td>or 18 months from date of manufacture</td>
</tr>
</tbody>
</table>

Our warranty applies only where such products are used in compliance with the requirements of the applicable product catalog and/or manuals. For additional information, please refer to the applicable limited warranty featured in the product manual.

Our warranty will not apply to any product that, in our sole judgement, has been subject to negligence, misapplication, improper installation, or improper maintenance. Without limiting the foregoing, operating a three phase motor with single phase power through a phase converter will void the warranty. Note also that three phase motors must be protected by three-leg, ambient compensated, extra-quick trip overload relays of the recommended size or the warranty is void.

Your only remedy, and Myers’s only duty, is that Myers repair or replace defective products (at Myers’s choice). You must pay all labor and shipping charges associated with this warranty and must request warranty service through the installing dealer as soon as a problem is discovered. No request for service will be accepted if received after the Warranty Period has expired. This warranty is not transferable.

MYERS SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR CONTINGENT DAMAGES WHATSOEVER.

The foregoing limited warranties are exclusive and in lieu of all other express and implied warranties, including but not limited to implied warranties of merchantability and fitness for a particular purpose. The foregoing limited warranties shall not extend beyond the duration provided herein.

Some states do not allow the exclusion or limitation of incidental or consequential damages or limitations on the duration of an implied warranty, so the above limitations or exclusions may not apply to You. This warranty gives You specific legal rights and You may also have other rights which vary from state to state.

This Limited Warranty is effective February 7, 2014 and replaces all undated warranties and warranties dated after February 7, 2014.

F.E. MYERS
293 Wright Street, Delavan, WI 53115
Phone: 888-987-8677 • Fax: 800-426-9446 • www.femyers.com
In Canada: 490 Pinebush Road, Unit 4, Cambridge, Ontario N1T 0A5
Phone: 800-363-7867 • Fax: 888-606-5484
Bombas submersibles de sumidero, de efluent y cloacales

SSM33I
BOMBAS DE SUMIDERO/EFLUENTE
(115 voltios - Monofásicas solamente)

SRM4
BOMBAS DE SUMIDERO/EFLUENTE/CLOACALES
(115 o 230 voltios - Monofásicas)
Dibujo de corte típico para la serie SSM33/SSM33I

20 Control superpuesto
 Interruptor de control del flotador vertical
 Cordón de 10 pies de largo
 Interruptor de control del flotador vertical
 Cordón de 20 pies de largo.
 No se ilustra
 (Sólo en modelos automáticos)

21 Amarre del cable. No se ilustra
 (Sólo en modelos automáticos)
20 Control superpuesto
21 Amarre del cable. No se ilustra (Sólo en modelos automáticos)
Lista de piezas para SSM33/SSM33I y SRM4

<table>
<thead>
<tr>
<th>No. de Ref.</th>
<th>Descripción y No.</th>
<th>Piezas necesarias</th>
<th>Números</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Aro, alza</td>
<td>1</td>
<td>26230A000</td>
</tr>
<tr>
<td>3</td>
<td>Tapón, 1/4" NPT</td>
<td>1</td>
<td>05022A056</td>
</tr>
<tr>
<td>4</td>
<td>Placa, de fábrica (no estampada)</td>
<td>1</td>
<td>23780A000</td>
</tr>
<tr>
<td>5</td>
<td>Rosca hembra, Tornillo (SSM33/SSM33I)</td>
<td>1</td>
<td>09822A032</td>
</tr>
<tr>
<td>5</td>
<td>Rosca hembra, Tornillo (SRM4P Auto.)</td>
<td>1</td>
<td>09822A006</td>
</tr>
<tr>
<td>5A</td>
<td>Tornillo, Prisionero #10 x 3/4 Interruptor de flotador vertical</td>
<td>2</td>
<td>18475A004</td>
</tr>
<tr>
<td>6</td>
<td>Aceite, Transformador (1.136 L en lata)</td>
<td>1</td>
<td>11009A002</td>
</tr>
<tr>
<td>8</td>
<td>Rotor con eje (SSM33/SSM33I)</td>
<td>1</td>
<td>22821A010</td>
</tr>
<tr>
<td>8</td>
<td>Rotor con eje (SRM4)</td>
<td>1</td>
<td>22821A000</td>
</tr>
<tr>
<td>9</td>
<td>Arandela, Empuje, Acero inoxidable</td>
<td>1</td>
<td>05030A243</td>
</tr>
<tr>
<td>10</td>
<td>Arandela, Empuje, Grafito</td>
<td>1</td>
<td>05030A244</td>
</tr>
<tr>
<td>11</td>
<td>Cártier, Motor</td>
<td>1</td>
<td>23770D002</td>
</tr>
<tr>
<td>12</td>
<td>Junta, 1/2" Eje</td>
<td>1</td>
<td>21607A001</td>
</tr>
<tr>
<td>13</td>
<td>Empaquetadura, caucho</td>
<td>1</td>
<td>05014A172</td>
</tr>
<tr>
<td>14</td>
<td>Tornillo, Prisionero, 1/4-20 x 7/8 de largo (SSM33/SSM33I) (SRM4)</td>
<td>3</td>
<td>18475A003</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>6</td>
<td>18475A003</td>
</tr>
<tr>
<td>15</td>
<td>Cubierta, Voluta (SSM33)</td>
<td>1</td>
<td>23771D001</td>
</tr>
<tr>
<td>15</td>
<td>Cubierta, Voluta (SSM33I)</td>
<td>1</td>
<td>23771D101</td>
</tr>
<tr>
<td>16</td>
<td>Impulsor (SSM33)</td>
<td>1</td>
<td>22370B000</td>
</tr>
<tr>
<td>16</td>
<td>Impulsor (SSM33I)</td>
<td>1</td>
<td>084980036</td>
</tr>
<tr>
<td>17</td>
<td>Placa, Inferior, con Cubierta en voluta</td>
<td>1</td>
<td>27005D000</td>
</tr>
<tr>
<td>18</td>
<td>Tornillo, Enrosque hembra, #10 x 1" de largo (SSM33, SRM4)</td>
<td>3</td>
<td>09822A036</td>
</tr>
</tbody>
</table>

Cuadro

<table>
<thead>
<tr>
<th>No. de catalogo de la bomba</th>
<th>No. de diseño de la bomba</th>
<th>Tipo de bomba</th>
<th>HP</th>
<th>V</th>
<th>Fase</th>
<th>① Cordón, Eléctrico</th>
<th>② Largo del cordón</th>
<th>③ Estator solamente</th>
<th>Resistencia del devanado en Ohmios</th>
<th>Amperaje máx.</th>
<th>Amperaje rotor bloqueado</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM33IM1C</td>
<td>26235D100</td>
<td>Manual</td>
<td>1/3</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
<td>-</td>
</tr>
<tr>
<td>SSM33IP-1</td>
<td>26235D110</td>
<td>Automático</td>
<td>1/3</td>
<td>115</td>
<td>1</td>
<td>21628B046</td>
<td>10'</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
<td>9 - 15/16"</td>
</tr>
<tr>
<td>SSM33IPC-1</td>
<td>26235D111</td>
<td>Automático</td>
<td>1/3</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
<td>9 - 15/16"</td>
</tr>
<tr>
<td>SSM33IPV1</td>
<td>26235D120</td>
<td>Automático</td>
<td>1/3</td>
<td>115</td>
<td>1</td>
<td>21628B046</td>
<td>10'</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
<td>5 - 7/8"</td>
</tr>
<tr>
<td>SSM33IPV1C</td>
<td>26235D121</td>
<td>Automático</td>
<td>1/3</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>22757B010</td>
<td>1.3</td>
<td>9</td>
<td>12.5</td>
<td>5 - 7/8"</td>
</tr>
<tr>
<td>SSM4M1C</td>
<td>26236D001</td>
<td>Manual</td>
<td>4/10</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>SSM4M2C</td>
<td>26236D003</td>
<td>Manual</td>
<td>4/10</td>
<td>230</td>
<td>1</td>
<td>21628B049</td>
<td>20'</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
<td>-</td>
</tr>
<tr>
<td>SSM4P-1</td>
<td>26236D010</td>
<td>Automático</td>
<td>4/10</td>
<td>115</td>
<td>1</td>
<td>21628B046</td>
<td>10'</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
<td>13 - 7/8"</td>
</tr>
<tr>
<td>SSM4P-1</td>
<td>26236D011</td>
<td>Automático</td>
<td>4/10</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
<td>13 - 7/8"</td>
</tr>
<tr>
<td>SSM4PC-2</td>
<td>26236D013</td>
<td>Automático</td>
<td>4/10</td>
<td>230</td>
<td>1</td>
<td>21628B049</td>
<td>20'</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
<td>13 - 7/8"</td>
</tr>
<tr>
<td>SSM4V-1</td>
<td>26236D041</td>
<td>Automático</td>
<td>4/10</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
<td>6 - 1/4"</td>
</tr>
<tr>
<td>SSM4V-2</td>
<td>26236D043</td>
<td>Automático</td>
<td>4/10</td>
<td>230</td>
<td>1</td>
<td>21628B049</td>
<td>20'</td>
<td>21599B027</td>
<td>4.3</td>
<td>6</td>
<td>8.2</td>
<td>6 - 1/4"</td>
</tr>
<tr>
<td>SSM4D-1</td>
<td>26236D061</td>
<td>Automático</td>
<td>4/10</td>
<td>115</td>
<td>1</td>
<td>21628B048</td>
<td>20'</td>
<td>21599B026</td>
<td>1.2</td>
<td>12</td>
<td>16</td>
<td>11"</td>
</tr>
</tbody>
</table>
NOTA: lea estas instrucciones con atención antes de tratar de instalar la bomba

Descripción y uso

SSM33, SSM33I y SRM4
Las Bombas Myers de las Series SSM33, SSM33I y SRM4 son unidades de un solo sello, disponibles en modelos automáticos o manuales. Las bombas de las series SSM33 y SSM33I están diseñadas para sumideros y desagües normales y también se pueden utilizar para bombear efluentes. Cuando se usen para la dosificación de efluente o en S.T.E.P., se deberá instalar la bomba en un tanque o compartimiento separado del lado de la descarga del tanque séptico. NUNCA INSTALE LA BOMBA EN EL TANQUE PRINCIPAL EN DONDE SE ACUMULA LODO DE DEPURACIÓN. NO USE LAS BOMBAS DE LAS SERIES SSM33 O SSM33I PARA AGUAS RESIDUALES CRUDAS. Las bombas de la serie SRM4 están diseñadas para usos con aguas residenciales o desagües en donde se necesita un tamaño de sólidos más grande.

General
Las bombas SSM33, SSM33I y SRM4 usan motores monofásicos de inducción de 1550 RPM. Los modelos SSM33 y SSM33I están disponibles solamente en 115 voltios, y el modelo SRM4 está disponible tanto en 115 como en 230 voltios y todos son solamente monofásicos. Tanto el modelo manual como el automático vienen con un interruptor de flotador superpuesto mecánico (sin mercurio) o un interruptor de flotador vertical. Las bombas SSM33 y SSM33I están diseñadas para procesar sólidos esféricos de 1/2" y tienen una roscas de descarga de 1-1/2" NPT. Las bombas SRM4 están diseñadas para procesar sólidos esféricos de 2" y tienen una roscas de descarga de 2" NPT. Los modelos SSM33, SSM33I y SRM4 usan un impulsor a vórtice (torbellino) diseñado para producir eficientemente las presiones y los flujos requeridos.

¡ADVERTENCIA! EL USO DE ESTAS BOMBAS NO HA SIDO APROBADO PARA PISCINAS DE NATACIÓN, NI PARA FUENTES, NI PARA BOMBEAR AGUA POTABLE

Bolsas de aire
Se dice que una bomba tiene una bolsa de aire si el agua atrapa aire dentro de la bomba y no puede salir, impidiendo así que la bomba funcione. Las bombas de sumidero SSM33, SSM33I y SRM4 tienen un orificio de ventilación de aire de 1/16" en la cámara del impulsor para dejar salir el aire atrapado. Si este orificio se tapa, es posible que se cree una bolsa de aire en la bomba. Como precaución secundaria, se debería perforar un orificio de 1/8" en la tubería de descarga por debajo de la válvula de retención. La válvula de retención debe estar entre 12 y 18 pulgadas por encima de la descarga de la bomba. No coloque una válvula de retención directamente en la abertura de descarga de la bomba.

Embalaje
Cada bomba viene empaquetada por separado en una caja marcada con el número de catálogo y el número de diseño de Myers. Las bombas se empacan cuidadosamente para impedir daños durante el envío. Sin embargo, puede haber daños ocasionales como resultado de una manipulación brusca. Examine la bomba con atención y verifique que no tenga defectos que puedan hacer que la bomba falle.

Controles de nivel
Los modelos automáticos vienen con un cordón eléctrico de 10 o 20 pies de largo y un interruptor de flotador superpuesto mecánico (sin mercurio). El interruptor superpuesto de 115 o de 230 voltios viene anclado directamente a la bomba. Como opción, el interruptor se puede montar en la tubería de descarga usando un largo de cadena de 3-5/8" como mínimo. Enchufe la ficha del cordón del interruptor en un receptáculo con la tensión (el voltaje) nominal, debidamente puesto a tierra. Enchufe el cordón eléctrico en la parte posterior del cordón del interruptor y adhiera los cordones con cinta adhesiva a la tubería de descarga cada 12'. El receptáculo eléctrico debe estar ubicado fuera del sumidero o del depósito, debido al PELIGRO de que haya una fuga de corriente.

En todas las unidades dobles o en las instalaciones simples con opciones adicionales como una alarma de alto nivel de agua, es necesario cortar el enchufe del cordón eléctrico y conectar el cordón a un tablero de control o a una caja de empalme hermética, si se usa en sumideros o depósitos húmedos. El control AWS-1 también actúa como caja de empalme hermética para conectar el cordón eléctrico al cordón de la bomba.

Diseño de los sistemas cloacales a presión
Myers dispone de un programa de computación (SOFTWARE) completo para diseñar SISTEMAS CLOACALES A PRESIÓN. Este indica los tamaños de las tuberías que se deben usar y el flujo exacto de cualquier bomba o grupo de bombas en el sistema cuando funcionan simultáneamente.

Este DISCO de diseño para IBM® o computadoras COMPATIBLES se encuentra disponible a solicitud para los ingenieros.

Tipo de motor
Los motores que se usan en estas bombas están prensados a las envolventes de hierro fundido y rodeados de aceite dieélectrico para ofrecer una transferencia térmica superior. Ambos modelos usan motores monofásicos de inducción de 1550 RPM. Los modelos SSM33 y SSM33I tienen una clasificación de 1/3 HP y el modelo SRM4 tiene una clasificación de 4/10 HP. Todas las unidades tienen un aislamiento de motor de clase A. Los modelos SSM33 y SSM33I vienen en 115 voltios, solamente monofásicos, y el modelo SRM4 está disponible en 115 o 230 voltios, monofásico. Todos tienen protección contra sobrecarga y usan un dispositivo de cojinete de forro doble. Estas bombas no tienen interruptores de inicio y no requieren un tablero de control para una instalación simple.

Advertencias de seguridad
ADVERTENCIA: Peligro de choque eléctrico. Las bombas vienen equipadas con un conductor de puesta a tierra y una ficha de tipo puesta a tierra en el cordón eléctrico. Para reducir el peligro de choque eléctrico, verifique que esté conectada solamente a un receptáculo tipo puesta a tierra debidamente conectado a tierra. NO corte la clavija a tierra ni use un accesorio de adaptación. NO use un cordón de alargue con esta bomba.

Todas las bombas tienen un CABLE DE PUESTA A TIERRA que está conectado al motor. Este cable va al receptáculo o al tablero de control que debe estar conectado debidamente a TIERRA en el exterior.

Cuando conecte los cables de esta bomba, respete todas las normas y los reglamentos eléctricos y de seguridad locales, así como las normas más recientes del National Electric Code (NEC-ANSI/NFPA 70).
Advertencia de la Proposición 65 de California

Este producto y accesorios relacionados contienen sustancias químicas reconocidas en el Estado de California como causantes de cáncer, malformaciones congénitas y otros daños al sistema reproductivo.

APROBADO POR CSA

Todas las bombas han sido aprobadas por la CSA. Myers es un miembro aprobado por SSPMA para bombas.

Instalación

PRECAUCIÓN: Nunca acceda a la cámara de la bomba después de que las aguas residuales o el efluente hayan estado en el depósito. Las aguas residuales pueden emitir metano, sulfuro de hidrógeno y otros gases que son muy venenosos. Por esta razón, Myers recomienda instalar las bombas de efluente con un sistema de remoción rápida. Este sistema de remoción rápida puede ser una unión o un empalme en la tubería o en la manguera de descarga que esté al alcance desde la superficie, o un sistema de riel tipo desconexión rápida en instalaciones más profundas. Consulte los dibujos de la instalación para los tipos de instalación que se sugieren.

El tanque de dosificación o la cámara de bombeo deben estar construidos con materiales resistentes a la corrosión y debe poder resistir todas las cargas internas y externas. Asimismo, no debe permitir ninguna infiltración ni exfiltración. El tanque debe estar provisto de un dispositivo para impedir que flote. Los orificios de acceso o las cubiertas deben ser del tamaño adecuado y accesibles desde la superficie, para permitir la instalación y el mantenimiento del sistema. Las cubiertas de acceso deben tener una cerradura o ser lo suficientemente pesadas para impedir un acceso fácil por parte del personal no autorizado. Se debe seleccionar una capacidad de almacenamiento de la cámara de bombeo adecuada para poder estar preparado en situaciones de emergencia.

La tubería de descarga debe ser del mismo tamaño que la descarga de la bomba, 1-1/2" para SSM33 y SSM33I, 2" para SRM4 o mayor. Para poder garantizar una velocidad suficiente del líquido e impedir que los sólidos residuales se acumulen en la tubería de descarga, se recomienda mantener un flujo mínimo de 2' por segundo. (12 GPM a través de una tubería de 1-1/2" pipe, 21 GPM a través de una tubería de 2" y 46 GPM a través de una tubería de 3"). Se recomienda usar una tubería de PVC o equivalente para resistir la corrosión. Se debe instalar una válvula de cierre total de flujo (esférica o de compuerta) para impedir el retroflujo del efluente, si es necesario sacar la bomba para reparaciones o servicio. Se debe instalar una válvula de retención (válvula checadora) en los sistemas cloacales a presión y en otros sistemas en donde las condiciones así lo permitan, para impedir el retroflujo y reducir el desgaste en el sistema de bombas. Se debe instalar una alarma de alto nivel del agua en un circuito separado del circuito de bombeo. Debe ser posible hacer una prueba del funcionamiento de la alarma.

Puntos a verificar si la bomba no marcha o no funciona correctamente

1. La bomba no funciona ni se enciende cuando el nivel del agua ha subido en el tanque
 a. Verifique si hay un fusible fundido o si se disparó el disyuntor.
 b. Verifique que el interruptor de nivel no esté defectuoso.
 c. Cuando se use un tablero de control, verifique que el interruptor H-O-A esté en la posición AUTO. Si no funciona, coloque el interruptor en la posición HAND (manual) y si la bomba funciona, entonces el problema está en el sistema eléctrico automático. Haga que un ELECTRICISTA realice un chequeo del sistema eléctrico.
 d. Verifique si el motor está agotado. Ocasionalmente, un relámpago puede perjudicar el motor, aún cuando tenga protección anti-rayos.
 e. Cuando se usen cordones de enchufar, verifique que las patas de contacto estén limpias y hagan buen contacto. NO USE CORDONES DE ENCHUFAR DENTRO DE UN SUMIDERO O UN POZO DE BOMBEO.
 f. La esfera o la plomada de control de nivel puede estar atorada a un costado del depósito. Asegúrese que esté flotando sin obstrucciones.

2. La bomba funciona pero no hay flujo
 a. Verifique que no hayan bolsas de aire. Encienda y apague la bomba varias veces, si esto no ayuda, es posible que deba aflojar una unión en la tubería de descarga para dejar escapar la bolsa de aire.
 b. Verifique que la válvula no esté instalada en la posición invertida. Verifique la posición de la flecha del flujo en el cuerpo de la válvula. Verifique la válvula de cierre. Puede estar cerrada.
 c. Verifique la elevación vertical. Puede ser más alta de lo que la bomba puede desarrollar (Consulte la curva de la bomba).
 d. Es posible que la admisión de la bomba esté obstruida. Saque la bomba para inspeccionarla.

PRECAUCIÓN: SIEMPRE DESENCHUFE LOS CORDONES ELÉCTRICOS O DESACTIVE TODOS LOS DISYUNTORES PRINCIPALES Y DE LOS RAMALES ANTES DE REALIZAR TRABAJOS EN LA BOMBA. Si el tablero de control está lejos de la bomba, desconecte los cables conductores al motor para que nadie pueda activar el disyuntor.

Antes de desarmar la bomba para cambiar las piezas

Limpie la bomba a fondo. Elimine todo el sarro y los depósitos. Sumerja la unidad completamente en una solución de Clorox después de que las aguas residuales o el efluente hayan estado en el depósito. Las aguas residuales pueden emitir metano, sulfuro de hidrógeno y otros gases que son muy venenosos. Por esta razón, Myers recomienda instalar las bombas de efluente con un sistema de remoción rápida. Este sistema de remoción rápida puede ser una unión o un empalme en la tubería o en la manguera de descarga que esté al alcance desde la superficie, o un sistema de riel tipo desconexión rápida en instalaciones más profundas. Consulte los dibujos de la instalación para los tipos de instalación que se sugieren.

El tanque de dosificación o la cámara de bombeo deben estar construidos con materiales resistentes a la corrosión y debe poder resistir todas las cargas internas y externas. Asimismo, no debe permitir ninguna infiltración ni exfiltración. El tanque debe estar provisto de un dispositivo para impedir que flote. Los orificios de acceso o las cubiertas deben ser del tamaño adecuado y accesibles desde la superficie, para permitir la instalación y el mantenimiento del sistema. Las cubiertas de acceso deben tener una cerradura o ser lo suficientemente pesadas para impedir un acceso fácil por parte del personal no autorizado. Se debe seleccionar una capacidad de almacenamiento de la cámara de bombeo adecuada para poder estar preparado en situaciones de emergencia.

La tubería de descarga debe ser del mismo tamaño que la descarga de la bomba, 1-1/2" para SSM33 y SSM33I, 2" para SRM4 o mayor. Para poder garantizar una velocidad suficiente del líquido e impedir que los sólidos residuales se acumulen en la tubería de descarga, se recomienda mantener un flujo mínimo de 2' por segundo. (12 GPM a través de una tubería de 1-1/2" pipe, 21 GPM a través de una tubería de 2" y 46 GPM a través de una tubería de 3"). Se recomienda usar una tubería de PVC o equivalente para resistir la corrosión. Se debe instalar una válvula de cierre total de flujo (esférica o de compuerta) para impedir el retroflujo del efluente, si es necesario sacar la bomba para reparaciones o servicio. Se debe instalar una válvula de retención (válvula checadora) en los sistemas cloacales a presión y en otros sistemas en donde las condiciones así lo permitan, para impedir el retroflujo y reducir el desgaste en el sistema de bombas. Se debe instalar una alarma de alto nivel del agua en un circuito separado del circuito de bombeo. Debe ser posible hacer una prueba del funcionamiento de la alarma.
Instalación típica en sumidero para la serie SSM33/SSM33I

- Diámetro mínimo del sumidero: 14".
- Receptáculo tipo puesta a tierra de 115 o 230 voltios.
- Altura mín. sobre el suelo: 4 pies.
- Cordón de la bomba se enchufa en la serie con cordón para operación automática.
- Cordón de la bomba se puede enchufar directamente en el receptáculo para operación manual.
- Tanto el interruptor como los cordones de la bomba tienen 10 o 20 pies de largo y son no. 16. Con dos conductores de corriente y uno a tierra. El aislamiento en los conductores del cordón de 20 pies de largo y de la funda está aprobado por ul y csa.

Válvula de cierre de compuerta de 1-1/2" (opc)

- Válvula de retención de 1-1/2" y conectores de camisa de caucho

- Línea inferior: Mín. 10 1/2"
- Tubería de admisión
- Motor de bomba de sumidero
- Depósito del sumidero de 14" a 18" de diá. De plástico, fibra de vidrio u hormigón
- La tubería de descarga de 1-1/2" puede ser de abs o de plástico pvc con adaptadores adecuados o puede ser de acero galv.
- Si se usa tubería de cobre, verificar que se use un accesorio roscado de plástico en la abertura de descarga de la bomba para conectar a un adaptador roscado de la tubería de cobre.

Nivel de encender
Nivel de apagar
Manija de izar
Instalación típica en sumidero para la serie SRM4

- Cubierta hermética
- Tubería de ventilación de 2" o 3" según los requisitos de las normas locales
- Cordón de la bomba se enchufa en la serie con cordón para operación automática.
- Cordón de la bomba se puede enchufar directamente en el receptáculo para operación manual.
- Tanto el interruptor como los cordones de la bomba tienen 10 o 20 pies de largo y son no. 16, con dos conductores de corriente y uno a tierra.
- Válvula de cierre de compuerta de 2"
- Válvula de retención de 2" de flujo libre
- Unión de 2"
- Receptáculo tipo puesta a tierra de 115 o 230 voltios. Altura mín. Sobre el suelo 4 pies.
- Válvula de cierre de compuerta de 2"
- Válvula de retención de 2" de flujo libre
- Unión de 2"
- Cubierta a prueba de gas del depósito del sumidero mín. 18" de diá, fibra de vidrio o polietileno
- La tubería de descarga de 2" puede ser de abs o de plástico pvc con adaptadores adecuados o puede ser de acero galv.
- Nivel de encender
- Interruptor de flotador
- Nivel de apagar

SRM4M1C 4/10 hp, 115 voltios
SRM4M2C 4/10 hp, 230 voltios
Precaución: para realizar cualquier trabajo en la bomba o en el interruptor, siempre desenchufe el cordón eléctrico; no desactive simplemente el disyuntor o desenchufe el fusible

Para reemplazar el flotador automático
(1) Desenchufe el cordón eléctrico de la bomba de la parte posterior del enchufe del flotador superpuesto.
(2) Desenchufe el enchufe superpuesto del receptáculo de corriente eléctrica.
(3) Saque la bomba de sumidero si no tiene acceso al punto de anclaje.
(4) Desconecte el interruptor de su punto de anclaje y sepáre de la tubería de descarga.
(5) Vuelva a anclar el cordón nuevo a la bomba o a la tubería de descarga.
(6) Amarre los cables de corriente y del interruptor a la tubería de descarga con un cable o adhiéralos con cinta adhesiva.
(7) Enchufe el interruptor en el receptáculo de corriente eléctrica.
(8) Enchufe el cordón eléctrico en el enchufe del interruptor.
(9) Llene el depósito y haga una prueba de funcionamiento con el interruptor.
(Todas las reparaciones de la bomba deben ser realizadas en un centro de servicio autorizado de Myers.

Para reemplazar el interruptor de flotador vertical
(1) Desenchufe el cordón eléctrico de la bomba de la parte posterior del enchufe superpuesto.
(2) Desenchufe el enchufe superpuesto del receptáculo de corriente eléctrica.
(3) Saque los dos tornillos de montaje en el soporte del interruptor que fijaban la unidad del interruptor a la bomba, y separe de la tubería de descarga.
(4) Instale la nueva unidad del interruptor en la bomba. Asegúrese de instalar la atadura de plástico suministrada y vuelva a anclarlo al tornillo de montaje.
(5) Amarre los cables de corriente y del interruptor a la tubería de descarga con un cable o adhiéralos con cinta adhesiva.
(6) Enchufe el interruptor superpuesto en el receptáculo de corriente eléctrica.
(7) Enchufe el cordón eléctrico en el enchufe del interruptor superpuesto.
(8) Llene el depósito y haga una prueba de funcionamiento con el interruptor.

Para reemplazar el Interruptor de flotador vertical automático y de diagrampa
(1) Saque el tapón de llenado de aceite ubicado en la parte superior del cárter del motor y drene el aceite del cárter. Elimine el aceite usado debidamente. No vuelva a usar el aceite viejo ya que puede contener agua como resultado de una falla de la junta.
(2) Coloque la bomba sobre un costado. Saque los seis tornillos que sostiene el fondo de aspiración a la cubierta en voluta. Saque el fondo de aspiración.
(3) Introduzca un destornillador fileteado para sacarla de la cubierta en voluta. Usando una herramienta para empujar (un trozo de tubo de PVC funciona bien), haga presión sobre la porción de caucho de la junta fija hasta que haya quedado nivelada en la cavidad de la junta. Limpie cuidadosamente la superficie de la junta con un paño limpio.
(4) Saque la porción giratoria (cerámica) del paquete y límpiela cuidadosamente con un paño limpio. Agregue una capa de aceite nuevo a eje del motor. Deslice la porción giratoria sobre el eje con la superficie de caucho de la junta mirando en la dirección opuesta a la superficie de la junta fija. Coloque la bomba en el centro del eje.
(5) Enchufe el impulsor en el eje. Atornille el impulsor en la dirección de las agujas del reloj en el eje, usando un destornillador para impedir que el eje gire y apriete el impulsor. Verifique que el impulsor gire libremente después de haberlo apretado.
(6) Saque cuidadosamente la nueva unidad de junta del paquete. Agregue una capa de aceite nuevo al diámetro exterior de caucho en la porción fija (carbono) e introduzca la cavidad de la junta en la cubierta en voluta. Usando una herramienta para empujar (un trozo de tubo de PVC funciona bien), haga presión sobre la porción de caucho de la junta fija hasta que haya quedado nivelada en la cavidad de la junta. Limpie cuidadosamente la superficie de la junta con un paño limpio.
(7) Saque la porción giratoria (cerámica) del paquete y límpiela cuidadosamente con un paño limpio. Agregue una capa de aceite nuevo al eje del motor. Deslice la porción giratoria sobre el eje con la superficie de caucho de la junta mirando en la dirección opuesta a la superficie de la junta fija. Coloque la bomba en el centro del eje.
(8) Coloque el impulsor en el eje. Atornille el impulsor en la dirección de las agujas del reloj en el eje, usando un destornillador para impedir que el eje gire y apriete el impulsor. Verifique que el impulsor gire libremente después de haberlo apretado.

Reemplazo de la junta del eje en SRM4
(1) Saque el tapón de llenado de aceite ubicado en la parte superior del cárter del motor y drene el aceite del cárter. Elimine el aceite usado debidamente. No vuelva a usar el aceite viejo ya que puede contener agua como resultado de una falla de la junta.
(2) Saque los tres tornillos prisioneros que sujetan la cubierta en voluta a la placa de sellado. Levante la unidad del motor hacia arriba y fuera de la cubierta en voluta.
(3) Coloque la unidad del motor sobre un costado. Introduzca un destornillador fileteado en la ranura en el centro del eje. Con un mazo de caucho, golpee cuidadosamente el impulsor en la dirección de rotación contraria mientras sostiene el eje con el destornillador.
(4) Saque la porción giratoria (cerámica) de la junta de los dedos. Empuje la porción fija (carbono) con un par de destornilladores fileteados para sacarla de la cubierta en voluta. Descarte las piezas de la unidad de la junta usada. NUNCA USE PIEZAS VIEJAS DE LA JUNTA; VUELVA A ARMAR LA BOMBA SÓLO CON UNA NUEVA UNIDAD DE JUNTA.
(5) Limpie el eje y la cubierta en voluta a fondo con un paño limpio. Si hay señales de agua en el aceite drenado, entonces será necesario secar el motor al aire por varios días para eliminar toda humedad restante.
(6) Saque cuidadosamente la nueva unidad de junta del paquete. Agregue una capa de aceite nuevo al diámetro exterior de caucho en la porción fija (carbono) e introduzca la cavidad de la junta en la cubierta en voluta. Usando una herramienta para empujar (un trozo de tubo de PVC funciona bien), haga presión sobre la porción de caucho de la junta fija hasta que haya quedado nivelada en la cavidad de la junta. Limpie cuidadosamente la superficie de la junta con un paño limpio.
(7) Saque la porción giratoria (cerámica) del paquete y límpiela cuidadosamente con un paño limpio. Agregue una capa de aceite nuevo al eje del motor. Deslice la porción giratoria sobre el eje con la superficie de caucho de la junta mirando en la dirección opuesta a la superficie de la junta fija. Coloque la junta en el centro del eje.
(9) Coloque la unidad del motor de la bomba en posición vertical y acomódelo en la cubierta en voluta. Vuelva a colocar los cuatro tornillos prisioneros y apriételos.

(10) Cambie el aceite en el cárter del motor usando solamente aceite de transformador sumergible de Myers. El nivel debe estar a 3/4" más bajo que la parte superior del cárter del motor. Verifique con una varilla medidora para asegurarse que la bomba se haya llenado debidamente.

(11) Enchufe la bomba en el receptáculo con puesta a tierra para hacer una prueba de funcionamiento. La bomba debe marchar en forma silenciosa y sin vibraciones.

Reemplazo del cordón eléctrico

(1) Afloje la tuerca de compresión de plástico que sujeta el cordón eléctrico. Deslice la tuerca hacia afuera del cárter del motor.

(2) Jale y saque el cordón eléctrico del cárter del motor a mano. Quizá sea necesario menear el cordón hacia adelante y hacia atrás varias veces para aflojarlo del cárter. Jale del cordón eléctrico hasta que los cables de conexión hayan quedado totalmente expuestos. Desconecte la corriente eléctrica del motor y los cables conductores a tierra con un par de tenazas.

(3) Vuelva a conectar los cables conductores de corriente eléctrica y de tierra al nuevo cordón eléctrico. El borne a tierra en el cordón eléctrico tiene un conector macho, y los bornes eléctricos en el nuevo cordón eléctrico son hembra.

(4) Cuidadosamente empuje los cables conectados hacia adentro del cárter del motor hasta que el cuerpo moldeado del cordón eléctrico quede asentado. Verifique que los cables permanezcan alejados del rotor y del eje. Deslice la tuerca en su lugar y apriétela a mano. Apriete la tuerca con una llave de tuercas de 13/16" hasta que quede ajustada, pero no la apriete demasiado.

(5) Enchufe la bomba en el receptáculo con puesta a tierra para hacer una prueba de funcionamiento. La bomba debe marchar en forma silenciosa, sin vibraciones y sin disparar el disyuntor.

Reemplazo del motor

(1) Desconecte el cordón eléctrico y drene el aceite como se indica en las secciones anteriores. Si hay señales de agua o de otro tipo de contaminación, puede que sea necesario reemplazar la unidad de la junta como se indicó en una sección anterior.

(2) Afloje y saque los tres tornillos prisioneros que sujetan el cárter del motor. Levante el cárter del motor y sáquelo de la unidad de la bomba.

(3) Saque el aro tórico del resto de la unidad de la bomba. Limpie la superficie y coloque el nuevo aro tórico en posición. Tenga cuidado de no cortar el aro tórico cuando lo instale.

(4) Coloque el nuevo cárter del motor (con el nuevo estator) en la unidad de la bomba. Alinee los tornillos de refuerzo e introduzca los tres tornillos prisioneros. Apriete los tornillos prisioneros de manera uniforme.

(5) Vuelva a instalar el cordón eléctrico como se indicó en una sección anterior.

(6) Cambie el aceite en el cárter del motor usando solamente aceite de transformador sumergible de Myers. El nivel debe estar a 3/4" más bajo que la parte superior del cárter del motor. Verifique con una varilla medidora para asegurarse de que la bomba se haya llenado debidamente.

(7) Enchufe la bomba en el receptáculo con puesta a tierra para hacer una prueba de funcionamiento. La bomba debe marchar en forma silenciosa, sin vibraciones y sin disparar el disyuntor.

Curvas de rendimiento
GARANTÍA LIMITADA

Myers le garantiza al consumidor inicial (“Comprador” o “Usted”) de los productos indicados a continuación, que éstos estarán libres de defectos en materiales y en mano de obra durante el Período de Garantía especificado a continuación.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Período de garantía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombas de chorro, pequeñas bombas centrífugas, bombas sumergibles y accesorios asociados.</td>
<td>lo que ocurra primero: 12 meses desde la fecha de la instalación inicial, o 18 meses desde la fecha de fabricación</td>
</tr>
<tr>
<td>Tanques de devanado de fibra</td>
<td>5 años desde la fecha de la instalación inicial</td>
</tr>
<tr>
<td>Tanques a presión de acero</td>
<td>5 años desde la fecha de la instalación inicial</td>
</tr>
<tr>
<td>Productos para sumideros/aguas</td>
<td>12 meses desde la fecha de la instalación inicial, o 36 meses desde la fecha de fabricación</td>
</tr>
<tr>
<td>Bombas procesadoras de sólidos de aguas residuales</td>
<td>12 meses desde la fecha de envío de la fábrica, o 18 meses desde la fecha de fabricación</td>
</tr>
</tbody>
</table>

Nuestra garantía no se aplicará a ningún producto que, a nuestro solo juicio, haya sido sometido a negligencia, mal uso, instalación o mantenimiento inadecuados. Sin prejuicio a lo que antecede, nuestra garantía quedará anulada en el caso en que un motor trifásico se haya usado con una fuente de alimentación monofásica, a través de un convertidor de fase. Es importante indicar que la garantía quedará anulada si los motores trifásicos no están protegidos por relés de sobrecarga de disparo extra-rápido, con compensación ambiental de tres etapas, del tamaño recomendado.

Su único recurso, y la única obligación de MYERS es la de reparar o reemplazar los productos defectuosos (a juicio de MYERS). Usted deberá pagar todos los cargos de mano de obra y de envío asociados a esta garantía y deberá solicitar el servicio bajo garantía a través del concesionario instalador tan pronto como se descubra un problema. No se aceptará ninguna solicitud de servicio bajo garantía que se reciba después del vencimiento del Período de Garantía. Esta garantía no es transferible.

MYERS NO SE HARÁ RESPONSABLE DE NINGÚN DAÑO CONSECUENTE, INCIDENTAL O CONTINGENTE.

Las garantías limitadas que anteceden son exclusivas y en lugar de toda otra garantía explícita o implícita, incluyendo, pero sin limitarse, a las garantías implícitas de comcriabilidad e idoneidad para un fin específico, las garantías limitadas que anteceden no se extenderán más allá del período de garantía indicado en la presente.

Ciertos estados no permiten la exclusión o limitación de daños incidentales o consecuentes o la aplicación de limitaciones en la duración de garantías implícitas, de modo que es posible que las limitaciones o exclusiones que preceden no correspondan en su caso. Esta garantía le otorga derechos legales específicos, y es posible que Usted tenga otros derechos que pueden variar de un estado al otro.

Esta Garantía Limitada entra en vigor a partir del 7 de febrero de 2014 y reemplaza toda otra garantía sin fecha o con fecha anterior al 7 de febrero de 2014.